精英家教网 > 高中数学 > 题目详情

在矩形ABCD中,求得的值为

(A)3    (B)2    (C)     (D)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在矩形ABCD中,AB=2,BC=a,又PA⊥平面ABCD,PA=4.
(Ⅰ)若在边BC上存在一点Q,使PQ⊥QD,求a的取值范围;
(Ⅱ)当边BC上存在唯一点Q,使PQ⊥QD时,求二面角A-PD-Q的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在矩形ABCD中,AB=5,AC=7,现向该矩形ABCD内随机投一点P,求∠APB>90°时的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2004•宁波模拟)(理)如图,在矩形ABCD中,AB=3
3
,BC=3,沿对角线BD将△BCD折起,使点C移到点C',且C'在平面ABD的射影O恰好在AB上.
(1)求证:BC'⊥面ADC';
(2)求二面角A-BC'-D的大小;
(3)求直线AB和平面BC'D所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

在矩形ABCD中,已知AD=2AB=2,点E是AD得中点,将△DEC沿CE折起到△D′EC的位置,使平面D′EC⊥平面BEC.
(1)证明:BE⊥CD′;
(2)求点E到平面D′EC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2004•宁波模拟)(文)如图,在矩形ABCD中,AB=3
3
,BC=3,沿对角线BD将△BCD折起,使点C移到点C',且C'在平面ABD的射影O恰好在AB上,则以C',A,B,D为顶点,构成一个四面体.
(1)求证:BC'⊥面ADC';
(2)求二面角A-BC'-D的正弦值;
(3)求直线AB和平面BC'D所成的角的正弦值.

查看答案和解析>>

同步练习册答案