精英家教网 > 高中数学 > 题目详情
11.已知函数f(x)=Asin(ωx+θ)( A>0,ω>0,|θ|<$\frac{π}{2}$)的最小正周期为π,且图象上有一个最低点为M($\frac{7π}{12}$,-3).
(1)求f(x)的解析式;
(2)求函数f(x)在[0,π]的单调递增区间.

分析 (1)由题意知A,利用周期公式可求ω,由图象上有一个最低点为M($\frac{7π}{12}$,-3),结合范围|θ|<$\frac{π}{2}$,可求θ,即可得解函数解析式.
(2)由已知利用正弦函数的单调性即可得解.

解答 (本题满分为15分)
解:(1)由题可知,$\left\{\begin{array}{l}{\stackrel{T=π=\frac{2π}{ω}}{A=3}}\\{ω•\frac{7π}{12}+θ=\frac{3π}{2}+2kπ,k∈Z}\end{array}\right.$,…(3分)
解得:ω=2,θ=$\frac{π}{3}$,可得解析式为:f(x)=3sin(2x+$\frac{π}{3}$).…(6分)
(2)由2kπ-$\frac{π}{2}$≤2x+$\frac{π}{3}$≤2kπ+$\frac{π}{2}$,k∈Z,…(8分)
可得kπ-$\frac{5π}{12}$≤x≤kπ+$\frac{π}{12}$,k∈Z,…(10分)
又x∈[0,π],可得单调递增区间为:[0,$\frac{π}{12}$],[$\frac{7π}{12}$,π].…(15分)

点评 本题主要考察了正弦函数的图象和性质,由y=Asin(ωx+φ)的部分图象确定其解析式,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.下列四个命题:
①“若 xy=0,则x=0且y=0”的逆否命题;
②“若m>2,则不等式x2-2x+m>0的解集为R”;
③若F1、F2是定点,|F1F2|=7,动点M满足|MF1|+|MF2|=7,则M的轨迹是椭圆;
④若{a,b,c}为空间的一组基底,则{a+b,b+c,c+a}构成空间的另一组基底;
其中真命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设向量$\overrightarrow{a}$、$\overrightarrow{b}$满足$\overrightarrow{a}$•$\overrightarrow{b}$=-8,且向量$\overrightarrow{a}$在向量$\overrightarrow{b}$方向上的投影为-3$\sqrt{2}$,则|$\overrightarrow{b}$|=$\frac{4\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知a=($\frac{1}{9}$)${\;}^{\frac{1}{3}}$,b=log93,c=3${\;}^{\frac{1}{9}}$,则a,b,c的大小关系是(  )
A.a>b>cB.c>a>bC.a>c>bD.c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=$\left\{\begin{array}{l}{{4}^{x},x≤0}\\{lo{g}_{9}x,x>0}\end{array}\right.$,则f(f($\frac{1}{27}$))=$\frac{1}{8}$;当f(f(x0))≥$\frac{1}{2}$时x0的取值范围是[$\frac{1}{3}$,1]∪[729,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知偶函数f(x)在区间[0,+∞)上单调递增,则满足f(2x-1)<f(3)的x取值集合是(-1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=ax2+2ax+4(0<a<3),若x1<x2,x1+x2=1-a,则(  )
A.f(x1)<f(x2B.f(x1)>f(x2
C.f(x1)=f(x2D.f(x1)<f(x2)和f(x1)=f(x2)都有可能

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若复数z满足z+zi=3+2i,则在复平面内z对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.乒乓球是我国的国球,在2016年巴西奥运会上尽领风骚,包揽该项目全部金牌,现某市有甲、乙两家乒乓球俱乐部,两家设备和服务都很好,但收费方式不同,甲家每张球台每小时6元;乙家按月计费,一个月中20小时以内(含20小时)每张球台90元,超过20小时的部分,每张球台每小时2元,某公司准备下个月从这两家中的一家租一张球台开展活动,其活动时间不少于12小时,也不超过30小时.
(Ⅰ)设在甲家租一张球台开展活动x小时的收费为 f(x)元(12≤x≤30),在乙家租一张球台开展活动x小时的收费为g(x)元(12≤x≤30),试求f(x)与g(x)的解析式;
(II)若该公司的活动时间大于15小时,选择哪家比较合算?为什么?

查看答案和解析>>

同步练习册答案