精英家教网 > 高中数学 > 题目详情
设函数f(x)=ax2+bx+1(a、b∈R)满足:f(-1)=0,且对任意实数x均有f(x)≥0成立,
(1)求实数a、b的值;
(2)当x∈[-2,2]时,求函数?(x)=ax2+btx+1的最大值g(t).
分析:(1)把函数f(x)=ax2+bx+1(a、b∈R)满足:f(-1)=0,代入可以求得a与b的关系式,再根据对任意实数x均有f(x)≥0成立,可以求出a与b的关系式;
(2)由(1)求出f(x)的解析式,已知a,b的值,可以代入求得函数?(x)=ax2+btx+1,配方法求出函数?(x)的最值;
解答:解:(1)函数f(x)=ax2+bx+1(a、b∈R)满足:f(-1)=0,可得a-b+1=0,可得b=a+1
∵对任意实数x均有f(x)≥0成立,
∴ax2+bx+1=ax2+(a+1)x+1≥0,恒成立,
a>0
△=0
解得(a+1)2-4a=(a-1)2=0,
∴a=1,b=2;
故答案为:a=1,b=2…(6分)
(2)当x∈[-2,2]时,求函数?(x)=ax2+btx+1=x2+2tx+1=(x+t)2+1-t2
函数的对称轴为x=-t,
当t≤0时,-t≥0,f(x)在(-2,-t)上为减函数,
f(x)在x=-2处取得最大值,g(x)max=g(-2)=5-4t;
当t>0时,在x=2处取得最大值,g(x)max=g(2)=5+4t;
函数?(x)=ax2+btx+1的最大值g(t).
g(t)=
5-4t
 &t≤0
5+4t
 &t>0
…(12分)
点评:此题主要考查二次函数的性质以及函数的恒成立问题,考查的知识点比较单一,是一道基础题;
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=ax+
xx-1
(x>1),若a是从1,2,3三个数中任取一个数,b是从2,3,4,5四个数中任取一个数,求f(x)>b恒成立的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax+b的图象经过点(1,7),又其反函数的图象经过点(4,0),求函数的解析式,并求f(-2)、f(
12
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax+bx-cx,其中a,b,c是△ABC的三条边,且c>a,c>b,则“△ABC为钝角三角形”是“?x∈(1,2),使f(x)=0”(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•杨浦区一模)(文)设函数f(x)=ax+1-2(a>1)的反函数为y=f-1(x),则f-1(-1)=
-1
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网设函数f(x)=(a
x
-
1
x
)n
,其中n=3
π
sin(π+x)dx,a为如图所示的程序框图中输出的结果,则f(x)的展开式中常数项是(  )
A、-
5
2
B、-160
C、160
D、20

查看答案和解析>>

同步练习册答案