精英家教网 > 高中数学 > 题目详情
如图,直三棱柱ABC-A1B1C1中,AB⊥AC,D、E分别为AA1、B1C的中点,DE⊥平面BCC1
(Ⅰ)证明:AB=AC;
(Ⅱ)设二面角A-BD-C为60°,求B1C与平面BCD所成的角的大小.
(Ⅰ)证明:取BC中点F,连结EF,则,从而
连结AF,则ADEF为平行四边形,从而AF∥DE,
又DE⊥平面BCC1
故AF⊥平面BCC1
从而AF⊥BC,即AF为BC的垂直平分线,所以AB=AC.
(Ⅱ)解:作AG⊥BD,垂足为G,连结CG,由三垂线定理知CG⊥BD,
故∠AGC为二面角A-BD-C的平面角,
由题设知,∠AGC=60°,
设AC=2,则
又AB=2,BC=2,故AF=

解得AD=,故AD=AF,
又AD⊥AF,所以四边形ADEF为正方形,
因为BC⊥AF,BC⊥AD,AF∩AD=A,
故BC⊥平面DEF,
因此平面BCD⊥平面DEF,
连结AE、DF,设AE∩DF=H,则EH⊥DF,EH⊥平面BCD,
连结CH,则∠ECH为B1C与平面BCD所成的角,
因ADEF为正方形,AD=,故EH=1,

所以
所以∠ECH=30°,
即B1C与平面BCD所成的角为30°。
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,直三棱柱ABC-A1B1C1中,∠ACB=90°,AC=1,CB=
2
,侧棱AA1=1,侧面AA1B1B的两条对角线交于点D,B1C1的中点为M,求证:CD⊥平面BDM.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,直三棱柱ABC-A1B1C1中,底面是以∠ABC为直角的等腰直角三角形,AC=2a,BB1=3a,D为A1C1的中点,E为B1C的中点.
(1)求直线BE与A1C所成的角;
(2)在线段AA1中上是否存在点F,使CF⊥平面B1DF,若存在,求出|
AF
|;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图在直三棱柱ABC-A1B1C1中∠ACB=90°,AA1=2,AC=BC=1,则异面直线A1B与AC所成角的余弦值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,直三棱柱ABC-A1B1C1中,AC⊥BC,AC=BC=CC1=2,M,N分别为AC,B1C1的中点.
(Ⅰ)求线段MN的长;
(Ⅱ)求证:MN∥平面ABB1A1
(Ⅲ)线段CC1上是否存在点Q,使A1B⊥平面MNQ?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=a,AA1=2a,D棱B1B的中点.
(Ⅰ)证明:A1C1∥平面ACD;
(Ⅱ)求异面直线AC与A1D所成角的大小;
(Ⅲ)证明:直线A1D⊥平面ADC.

查看答案和解析>>

同步练习册答案