精英家教网 > 高中数学 > 题目详情
已知函数f(x)=mx3+nx2的图象在点(-1,2)处的切线恰好与直线3x+y=0平行.
(1)求函数f(x)在[-4,0]的值域;
(2)若f(x)在区间[t,t+1]上单调递减,求实数t的取值范围.
分析:(1)先对函数f(x)进行求导,又根据f'(-1)=-3,f(-1)=2可得到关于m,n的值,代入函数f(x)可得f'(x),然后研究函数在[-4,0]上的单调性,从而可求出函数的值域;
(2)根据(1)求f'(x)<0时x的取值区间,即为减区间,[t,t+1]为减区间的子集,从而解决问题.
解答:解:由已知条件得f'(x)=3mx2+2nx,
由f'(-1)=3,∴3m-2n=-3.
又f(-1)=2,∴-m+n=2,
∴m=1,n=3
∴f(x)=x3+3x2,∴f'(x)=3x2+6x.
(1)令f'(x)=3x2+6x=0解得x=0或x=-2
当x∈[-4,-2]时,f'(x)>0,当x∈[-2,0]时,f'(x)<0
∴f(x)max=f(-2)=4,f(-4)=-64+48=-16,f(0)=0
∴函数f(x)在[-4,0]的值域为[-16,4]
(2)令f'(x)<0,即x2+2x<0,
函数f(x)的单调减区间是(-2,0).
∵f(x)在区间[t,t+1]上单调递减,
则[t,t+1]?[-2,0]
∴实数t的取值范围是[-2,-1].
点评:本题主要考查通过求函数的导数来求函数增减区间的问题、利用导数研究曲线上某点切线方程,同时考查了运算求解的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=m•2x+t的图象经过点A(1,1)、B(2,3)及C(n,Sn),Sn为数列{an}的前n项和,n∈N*
(1)求Sn及an
(2)若数列{cn}满足cn=6nan-n,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=m(x+
1
x
)的图象与h(x)=(x+
1
x
)+2的图象关于点A(0,1)对称.
(1)求m的值;
(2)若g(x)=f(x)+
a
4x
在(0,2]上是减函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
m
n
,其中
m
=(sinωx+cosωx,
3
cosωx)
n
=(cosωx-sinωx,2sinωx),其中ω>0,若f(x)相邻两对称轴间的距离不小于
π
2

(Ⅰ)求ω的取值范围;
(Ⅱ)在△ABC中,a,b,c分别是角A,B,C的对边,a=
3
,b+c=3,当ω最大时,f(A)=1,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

以下两题任选一题:(若两题都作,按第一题评分)
(一):在极坐标系中,圆ρ=2cosθ的圆心到直线θ=
π
3
(ρ∈R)的距离
3
2
3
2

(二):已知函数f(x)=m-|x-2|,m∈R,当不等式f(x+2)≥0的解集为[-2,2]时,实数m的值为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=m-|x-2|,m∈R,且f(x+2)≥0的解集为[-1,1].
(1)求m的值;
(2)若a,b,c∈R+,且
1
a
+
1
2b
+
1
3c
=m,求Z=a+2b+3c的最小值.

查看答案和解析>>

同步练习册答案