精英家教网 > 高中数学 > 题目详情
直线y=
4
3
x+m
与双曲线
x2
9
-
y2
16
=1
的交点个数是(  )
A.0B.1
C.2D.视m的值而定
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的焦点和上顶点分别为F1、F2、B,我们称△F1BF2为椭圆C的特征三角形.如果两个椭圆的特征三角形是相似三角形,则称这两个椭圆为“相似椭圆”,且特征三角形的相似比即为相似椭圆的相似比.已知椭圆C1
x2
a2
+
y2
b2
=1
以抛物线y2=4
3
x
的焦点为一个焦点,且椭圆上任意一点到两焦点的距离之和为4.(1)若椭圆C2与椭圆C1相似,且相似比为2,求椭圆C2的方程.
(2)已知点P(m,n)(mn≠0)是椭圆C1上的任一点,若点Q是直线y=nx与抛物线x2=
1
mn
y
异于原点的交点,证明点Q一定落在双曲线4x2-4y2=1上.
(3)已知直线l:y=x+1,与椭圆C1相似且短半轴长为b的椭圆为Cb,是否存在正方形ABCD,使得A,C在直线l上,B,D在曲线Cb上,若存在求出函数f(b)=SABCD的解析式及定义域,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线的中心在原点,坐标轴为对称轴,一条渐近线方程y=
4
3
x
,右焦点F(5,0),双曲线的实轴为A1A2,P为双曲线上一点(不同于A1,A2),直线A1P、A2P分别与直线l:x=
9
5
交于M、N两点.
(Ⅰ)求双曲线的方程;
(Ⅱ)求证:
FM
FN
为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

直线y=
4
3
x+m
与双曲线
x2
9
-
y2
16
=1
的交点个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A(3,0)及双曲线E:
x2
9
-
y2
16
=1
,若双曲线E的右支上的点Q到点B(m,0)(m≥3)距离的最小值为|AB|.
(1)求m的取值范围,并指出当m变化时B的轨迹C
(2)如(图1),轨迹C上是否存在一点D,它在直线y=
4
3
x
上的射影为P,使得
AP
OD
=
OP
PD
?若存在试指出双曲线E的右焦点F分向量
AD
所成的比;若不存在,请说明理由.
(3)(理)当m为定值时,过轨迹C上的点B(m,0)作一条直线l与双曲线E的右支交于不同的两点(图2),且与直线y=
4
3
x
y=-
4
3
x
分别交于M、N两点,求△MON周长的最小值.

查看答案和解析>>

同步练习册答案