精英家教网 > 高中数学 > 题目详情

已知函数数学公式是奇函数.
(1)求a、b的值;
(2)写出f(x)的单调区间(不需要证明);
(3)求f(x)的值域.

解:(1)因为是奇函数,则有=0,故a=0,
再由f(1)+f(-1)=0得=0,
,即2+b=2-b,可得b=0,
故有a=b=0

(2)由(1)知 可知:
令导数小于0,解得x的取值范围是(-∞,-1)、(1,+∞)
令导数大于0,解得x的取值范围是(-1,1)
故函数在(-∞,-1]、[1,+∞)上分别递减;(-1,1)上递增;

(3)由(1)知=
当x>0时,,则f(x)∈(0,]
当x<0时,,则f(x)∈[,0)
当x=0时,f(x)=0显然成立
综上知,函数的值域是:
分析:(1)根据奇函数的性质进行赋值求a、b的值,可由f(0)=0求出a,再有f(1)+f(-1)=0求b,
(2)由(1)知 通过观察函数解析式可直接写出函数的单调区间.
(3)由函数的解析式的形式知,由于函数在自变量不为0时可以化为=,本题求值域适合用基本不等式分类求值域.
点评:本题考点是函数的单调性及单调区间,综合考查了函数的定义域、值域、以及单调性,本题考查全面综合性强,解法典型,题后应好好总结:本题在转化时的规律及其转化的依据.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=loga
x+1
x-1
,(a>0,且a≠1)
(Ⅰ)求函数的定义域,并证明f(x)=loga
x+1
x-1
在定义域上是奇函数;
(Ⅱ)对于x∈[2,4]f(x)=loga
x+1
x-1
>loga
m
(x-1)2(7-x)
恒成立,求m的取值范围;
(Ⅲ)当n≥2,且n∈N*时,试比较af(2)+f(3)+…+f(n)与2n-2的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数h(x)=2x,且h(x)=f(x)+g(x),其中f(x)是偶函数,g(x)是奇函数.
(1)求f(x)和g(x)的解析式;
(2)证明:f(x)是(0,+∞)上的单调增函数;
(3)设F(x)=4a•[g(x)+2-x-1]+4x+1,x∈[0,2],讨论F(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:
①函数y=|x|与函数y=(
x
)2
表示同一个函数;
②已知函数f(x+1)=x2,则f(e)=e2-1
③已知函数f(x)=4x2+kx+8在区间[5,20]上具有单调性,则实数k的取值范围是(-∞,40]∪[160,+∞)
④已知f(x)、g(x)是定义在R上的两个函数,对任意x、y∈R满足关系式f(x+y)+f(x-y)=2f(x)•g(y),且f(0)=0,但x≠0时f(x)•g(x)≠0则函数f(x)、g(x)都是奇函数.
其中正确命题的个数是(  )

查看答案和解析>>

科目:高中数学 来源:2014届福建省四地六校高三上学期第一次月考理科数学试卷(解析版) 题型:解答题

已知函数    是奇函数.

(1)求实数的值;

(2)若函数在区间上单调递增,求实数的取值范围;

(3)求函数的值域.

 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数    是奇函数.

(1)求实数的值;

(2)若函数在区间上单调递增,求实数的取值范围;

(3)求函数的值域

查看答案和解析>>

同步练习册答案