精英家教网 > 高中数学 > 题目详情
已知椭圆M::
x2
a2
+
y2
3
=1(a>0)的一个焦点为F(-1,0),左右顶点分别为A,B.经过点F的直线l与椭圆M交于C,D两点.
(Ⅰ)求椭圆方程;
(Ⅱ)当直线l的倾斜角为45°时,求线段CD的长;
(Ⅲ)记△ABD与△ABC的面积分别为S1和S2,求|S1-S2|的最大值.
(I)因为F(-1,0)为椭圆的焦点,所以c=1,又b2=3,
所以a2=4,所以椭圆方程为
x2
4
+
y2
3
=1;
(Ⅱ)因为直线的倾斜角为45°,所以直线的斜率为1,
所以直线方程为y=x+1,和椭圆方程联立得到
x2
4
+
y2
3
=1
y=x+1
,消掉y,得到7x2+8x-8=0,
所以△=288,x1+x2=-
8
7
,x1x2=-
8
7

所以|CD|=
1+k2
|x1-x2|=
2
×
(x1+x2)2-4x1x2
=
24
7

(Ⅲ)当直线l无斜率时,直线方程为x=-1,
此时D(-1,
3
2
),C(-1,-
3
2
),△ABD,△ABC面积相等,|S1-S2|=0,
当直线l斜率存在(显然k≠0)时,设直线方程为y=k(x+1)(k≠0),
设C(x1,y1),D(x2,y2),
和椭圆方程联立得到
x2
4
+
y2
3
=1
y=k(x+1)
,消掉y得(3+4k2)x2+8k2x+4k2-12=0,
显然△>0,方程有根,且x1+x2=-
8k2
3+4k2
,x1x2=
4k2-12
3+4k2

此时|S1-S2|=2||y1|-|y2||=2|y1+y2|=2|k(x2+1)+k(x1+1)|
=2|k(x2+x1)+2k|=
12|k|
3+4k2
=
12
3
|k|
+4|k|
12
2
3
|k|
×4|k|
=
12
2
12
=
3
,(k=±
3
2
时等号成立)
所以|S1-S2|的最大值为
3
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知离心率为
6
3
的椭圆C:
x2
a 2
+
y2
b2
=1
(a>b>0)经过点P(
3
,1)

(1)求椭圆C的方程;
(2)过左焦点F1且不与x轴垂直的直线l交椭圆C于M、N两点,若
OM
ON
=
4
6
3tan∠MON
(O为坐标原点),求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知方向向量为
V
=(1,
3
)
的直线l过椭圆C:
x2
a 2
+
y2
b2
=1(a>b>0)
的焦点以及点(0,-2
3
),直线l与椭圆C交于A、B两点,且A、B两点与另一焦点围成的三角形周长为4
6

(1)求椭圆C的方程;
(2)过左焦点F1且不与x轴垂直的直线m交椭圆于M、N两点,
OM
ON
=
4
6
3tan∠MON
≠0
(O坐标原点),求直线m的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知离心率为
6
3
的椭圆C:
x2
a 2
+
y2
b2
=1
(a>b>0)经过点P(
3
,1)

(1)求椭圆C的方程;
(2)过左焦点F1且不与x轴垂直的直线l交椭圆C于M、N两点,若
OM
ON
=
4
6
3tan∠MON
(O为坐标原点),求直线l的方程.

查看答案和解析>>

同步练习册答案