精英家教网 > 高中数学 > 题目详情
如图所示,在四棱锥P﹣ABCD中,底面ABCD是正方形,PD⊥底面ABCD,M,N分别是PA,BC的中点,且PD=AD=1.
(1)求证:MN∥平面PCD;
(2)求三棱锥P﹣ABC的体积.
解:(1)取PB中点Q,连接MQ、NQ
∵△PBA中,M、Q分别为PA、PB的中点,
∴MQ∥AB,
结合AB∥CD得
MQ∥CD
∵MQ平面PCD,CD平面PCD,
∴MQ∥平面PCD,
同理可得NQ∥平面PCD,
∵MQ、NQ是平面MNQ内的相交直线
∴平面MNQ∥平面PCD,
∵NM平面MNQ
∴MN∥平面PCD;
(2)∵正方形ABCD的边长等于1
∴三角形ACB的面积为S△ABC=SABCD=
又∵PD⊥底面ABCD,且PD=1,
∴三棱锥P﹣ABC的高为1,
因此三棱锥P﹣ABC的体积V=S△ABC PD=
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图所示,在四棱锥P-ABCD中,侧面PAD是正三角形,且垂直于底面ABCD,底面ABCD是边长为2的菱形,∠BAD=60°,M为PC上一点,且PA∥平面BDM.
(1)求证:M为PC中点;
(2)求平面ABCD与平面PBC所成的锐二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图所示,在四棱锥P-ABCD中,PC⊥平面ABCD,PC=2,在四边形ABCD中,∠B=∠C=90°,AB=4,CD=1,点M在PB上,PB=4PM,PB与平面ABCD成30°的角.
(1)求证:CM∥平面PAD;
(2)点C到平面PAD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•广东)如图所示,在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,点E在线段PC上,PC⊥平面BDE.
(1)证明:BD⊥平面PAC;
(2)若PA=1,AD=2,求二面角B-PC-A的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在四棱锥P-ABCD中,底面四边形ABCD是正方形,PD⊥平面ABCD,E为PC的中点.
求证:
(1)PA∥平面BDE;
(2)AC⊥平面PBD.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,PA=AD=2AB=2,M为PD上的点,若PD⊥平面MAB
(I)求证:M为PD的中点;
(II)求二面角A-BM-C的大小.

查看答案和解析>>

同步练习册答案