精英家教网 > 高中数学 > 题目详情

设fk(n)为关于n的k(k∈N)次多项式.数列{an}的首项a1=1,前n项和为Sn.对于任意的正整数n,an+Sn=fk(n)都成立.

(1)若k=0,求证:数列{an}是等比数列;

(2)试确定所有的自然数k,使得数列{an}能成等差数列.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设fk(n)为关于n的k(k∈N)次多项式.数列{an}的首项a1=1,前n项和为Sn.对于任意的正整数n,an+Sn=fk(n)都成立.
(I)若k=0,求证:数列{an}是等比数列;
(Ⅱ)试确定所有的自然数k,使得数列{an}能成等差数列.

查看答案和解析>>

科目:高中数学 来源:0110 期中题 题型:解答题

设fk(n)为关于n的k(k∈N)次多项式.数列{an}的首项a1=1,前n项和为Sn。对于任意的正整数n,an+Sn=fk(n)都成立。
(1)若k=0,求证:数列{an}是等比数列;
(2)试确定所有的自然数k,使得数列{an}能成等差数列。

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省盐城中学高三(下)开学数学试卷(解析版) 题型:解答题

设fk(n)为关于n的k(k∈N)次多项式.数列{an}的首项a1=1,前n项和为Sn.对于任意的正整数n,an+Sn=fk(n)都成立.
(I)若k=0,求证:数列{an}是等比数列;
(Ⅱ)试确定所有的自然数k,使得数列{an}能成等差数列.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江苏省连云港市赣榆县海头高级中学高三数学试卷(解析版) 题型:解答题

设fk(n)为关于n的k(k∈N)次多项式.数列{an}的首项a1=1,前n项和为Sn.对于任意的正整数n,an+Sn=fk(n)都成立.
(I)若k=0,求证:数列{an}是等比数列;
(Ⅱ)试确定所有的自然数k,使得数列{an}能成等差数列.

查看答案和解析>>

同步练习册答案