精英家教网 > 高中数学 > 题目详情
已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的焦点分别是F1,F2,点M(1 ,
3
2
)
在椭圆上,且|MF1|+|MF2|=4.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若直线l:y=kx+t(k≠0,t>0)与椭圆C:
x2
a2
+
y2
b2
=1
交于A,B两点,点P满足
AP
+
BP
=
0
,点Q的坐标是(0 ,
3
2
)
,设直线PQ的斜率是k1,且k1•k=2,求实数t的取值范围.
分析:(Ⅰ)利用点M(1 ,
3
2
)
在椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
上,且|MF1|+|MF2|=4,可求椭圆的几何量,从而可得椭圆C的标准方程;
(Ⅱ)联立方程组,利用韦达定理,及向量知识,结合k1•k=2,建立不等式,即可求得实数t的取值范围.
解答:解:(Ⅰ)因为点M(1 ,
3
2
)
在椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
上,且|MF1|+|MF2|=4,
所以
1
a2
+
3
4b2
=1
,2a=4.
所以a2=4,b2=1.
所以椭圆C的标准方程是
x2
4
+y2=1
.…..(3分)
(Ⅱ)联立方程组
y=kx+t 
x2
4
+y2=1 
消去y,得(1+4k2)x2+8ktx+4(t2-1)=0.
所以△=64k2t2-16(1+4k2)(t2-1)>0,…..(4分)
即1+4k2>t2.①…..(5分)
设A(x1,y1),B(x2,y2),所以x1+x2=
-8kt
1+4k2
.…..(6分)
因为
AP
+
BP
=
0
,所以点P是AB的中点,
设P(xP,yP),所以xp=
-4kt
1+4k2
yp=kxP+t=
1
1+4k2
.…..(8分)
因为点Q的坐标是(0 ,
3
2
)
,直线PQ的斜率是k1
所以k1=
yP-
3
2
xP
=
2t-3(1+4k2)
-8kt
.…..(10分)
因为k1•k=2,所以k•
2t-3(1+4k2)
-8kt
=2

所以1+4k2=6t.②…..(12分)
所以由①,②式,可得  6t>t2且6t>1.
所以1<t<6.
所以实数t的取值范围是1<t<6.…..(14分)
点评:本题考查椭圆的标准方程,考查直线与椭圆的位置关系,考查向量知识的运用,考查韦达定理,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
1
2
,且经过点P(1,
3
2
)

(1)求椭圆C的方程;
(2)设F是椭圆C的左焦,判断以PF为直径的圆与以椭圆长轴为直径的圆的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的短轴长为2
3
,右焦点F与抛物线y2=4x的焦点重合,O为坐标原点.
(1)求椭圆C的方程;
(2)设A、B是椭圆C上的不同两点,点D(-4,0),且满足
DA
DB
,若λ∈[
3
8
1
2
],求直线AB的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)经过点A(1,
3
2
),且离心率e=
3
2

(Ⅰ)求椭圆C的方程;
(Ⅱ)过点B(-1,0)能否作出直线l,使l与椭圆C交于M、N两点,且以MN为直径的圆经过坐标原点O.若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•房山区二模)已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的长轴长是4,离心率为
1
2

(Ⅰ)求椭圆方程;
(Ⅱ)设过点P(0,-2)的直线l交椭圆于M,N两点,且M,N不与椭圆的顶点重合,若以MN为直径的圆过椭圆C的右顶点A,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的短轴长为2,离心率为
2
2
,设过右焦点的直线l与椭圆C交于不同的两点A,B,过A,B作直线x=2的垂线AP,BQ,垂足分别为P,Q.记λ=
AP+BQ
PQ
,若直线l的斜率k≥
3
,则λ的取值范围为
 

查看答案和解析>>

同步练习册答案