精英家教网 > 高中数学 > 题目详情
二次函数f(x)=ax2+bx+c的图象开口向下,对称轴为x=1,图象与x轴的两个交点中,一个交点的横坐标x1∈(2,3),则以下结论中:①abc>0;   ②a+b+c<0;   ③a+c<b;   ④3b>2c;  ⑤3a+c>0.正确的序号是
③④
③④
分析:根据一元二次函数图象的对称性及图象与x轴的两个交点中,一个交点的横坐标x1∈(2,3),
f(2)=f(0)>0,f(3)=f(-1)<0;
图象开口向下可得a<0,对称轴方程x=∵-
b
2a
=1⇒b=-2a,c=f(0)>0,可判断①是否正确;
利用f(1)=a+b+C来判断②是否正确;
利用 f(-1)=f(3)=a-b+c来判断③是否正确;
利用f(-1)=a-b+c与b=-2a来判断④是否正确;
利用f(3)=9a+3b+c与b=-2a来判断⑤是否正确.
解答:解:根据题意得a<0;f(1)=a+b+C>0;-
b
2a
=1;f(2)=4a+2b+c>0;f(3)=9a+3b+c<0.
∵-
b
2a
=1⇒b=-2a>0,f(0)=f(2)=c>0,∵a<0,∴abc<0,∴①×;
∵f(1)=a+b+C>0f(1)=a+b+C>0,∴②×;
∵根据一元二次函数的对称性,f(-1)=f(3)=a-b+c<0⇒a+c<b,∴③√;
∵f(-1)=a-b+c=-
b
2
-b+c=f(3)<0⇒2c<3b,∴④√;
∵a+b+C>0⇒3a+3b+3C>0,∵9a+3b+c<0⇒-6a+2c>0,∵b=-2a
∵b=-2a,9a+3b+c=3a+c<0,∴⑤×;
故答案是③④
点评:本题考查了一元二次函数的图象的对称性,及一元二次方程根的分布.利用一元二次函数图象分析一元二次方程的解(函数的零点)的分布与一元二次不等式的解集是此类题的常用方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数f(x)=a(x+1)2+4-a,其中a为常数且0<a<3.取x1,x2满足:x1>x2,x1+x2=1-a,则f(x1)与f(x2)的大小关系为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=a(x-m)(x-n)(m<n),若不等式f(x)>0的解集是(m,n)且不等式f(x)+2>0的解集是(α,β),则实数m、n、α、β的大小关系是(  )

查看答案和解析>>

科目:高中数学 来源:2012年人教B版高中数学必修一2.4函数的零点练习卷(一)(解析版) 题型:解答题

已知二次函数f(x)=a+bx(a,b是常数且a0)满足条件:f(2)=0.方程f(x)=x有等根

(1)求f(x)的解析式;

(2)问:是否存在实数m,n使得f(x)定义域和值域分别为[m,n]和

[2m,2n],如存在,求出m,n的值;如不存在,说明理由.

 

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知二次函数f(x)=a(x+1)2+4-a,其中a为常数且0<a<3.取x1,x2满足:x1>x2,x1+x2=1-a,则f(x1)与f(x2)的大小关系为(  )
A.不确定,与x1,x2的取值有关
B.f(x1)>f(x2
C.f(x1)<f(x2
D.f(x1)=f(x2

查看答案和解析>>

科目:高中数学 来源:2006-2007学年广东省阳江市高二(上)期末数学试卷(理科)(解析版) 题型:选择题

已知二次函数f(x)=a(x-m)(x-n)(m<n),若不等式f(x)>0的解集是(m,n)且不等式f(x)+2>0的解集是(α,β),则实数m、n、α、β的大小关系是( )
A.m<α<β<n
B.α<m<n<β
C.m<α<n<β
D.α<m<β<n

查看答案和解析>>

同步练习册答案