精英家教网 > 高中数学 > 题目详情
15.若甲、乙、丙三组科研人员人数分别为12,18,m,现用分层抽样方法从这三组人员中抽取n人组成一个科考队,若在乙组中抽3人,丙组中抽4人,求m,n的值.

分析 先求出每个个体被抽到的概率,再分别根据乙组中抽3人,丙组中抽4人,即可求出m,n的值

解答 解:∵每个个体被抽到的概率等于$\frac{n}{12+18+m}$,乙组中抽3人,丙组中抽4人
则$\frac{n}{12+18+m}$×18=3,$\frac{n}{12+18+m}$×m=4,
解得m=24,n=9

点评 本题主要考查分层抽样的定义和方法,用每层的个体数乘以每个个体被抽到的概率等于该层应抽取的个体数,属于基础题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.设定义域为R的奇函数f(x)单调递减,且f(cos2θ+2msinθ)+f(-2m-2)>0恒成立,则m的范围是(  )
A.$(1-\sqrt{2},+∞)$B.$[1-\sqrt{2},+∞)$C.$(-\frac{1}{2},+∞)$D.$[-\frac{1}{2},+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知抛物线C:y2=2px(p>1)的焦点为F,直线y=m与y轴的交点为P,与C的交点为Q(x0,y0),且$\frac{|QF|}{|PQ|}$=p.
(1)当x0+p取得最小值时,求p的值;
(2)当x0=1时,若直线l与抛物线C相交于A,B两点,与圆M:(x-n)2+y2=1相交于D,E两点,O为坐标原点,OA⊥OB,试问:是否存在实数n,使得|DE|的长为定值?若存在,求出n的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知抛物线C顶点在原点,关于x轴对称,且经过P(1,2).
(Ⅰ)求抛物线C的标准方程及准线方程;
(Ⅱ)已知不过点P且斜率为1的直线l与抛物线C交于A,B两点,若AB为直径的圆经过点P,试求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知一个算法的程序框图如图所示,当输出的结果为$\frac{1}{2}$时,则输入的x值为(  )
A.$\sqrt{2}$B.1C.-1或$\sqrt{2}$D.-1或$\sqrt{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}满足a5=13,an+1-an=3(n∈N*),数列{bn}的前n项和Sn=1-$\frac{1}{{2}^{n}}$(n∈N*).
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)记Tn=a1b1+a2b2+a3b3+…+anbn,比较Tn与4的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在△ABC中,角A,B,C的对边分别为a,b,c,若a:b:c=4:5:6,则$\frac{sin2A}{sinC}$=(  )
A.$\frac{1}{2}$B.$\frac{2}{3}$C.1D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.圆x2+y2-4x-4y=0上的点到直线x+y-6=0的最大距离和最小距离的差是(  )
A.$\sqrt{2}$B.$3\sqrt{2}$C.$2\sqrt{2}$D.$4\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设集合A={0,1,2,3},集合B={-1,1},则A∩B=(  )
A.{1}B.{-1,1}C.{-1,0}D.{-1,0,1}

查看答案和解析>>

同步练习册答案