精英家教网 > 高中数学 > 题目详情
在1,2,3,…,200中被5能整除的数共有(  )个.
A.20B.30C.40D.50
由题意1,2,3,…,200中,能被5整除的数,
第一个数是5,最后一个数是200,所有的这些数构成了一个公差为5的等差数列,
故有200=5+5(n-1)
解得n=40
故选C.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在1,2,3…,9,这9个自然数中,任取3个数.
(Ⅰ)求这3个数中,恰有一个是偶数的概率;
(Ⅱ)记ξ为这三个数中两数相邻的组数,(例如:若取出的数1、2、3,则有两组相邻的数1、2和2、3,此时ξ的值是2).求随机变量ξ的分布列及其数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:

在1,2,3,4,5五条线路的公交车都停靠的车站上,张老师等候1,3,4路车.已知每天2,3,4,5路车经过该站的平均次数是相等的,1路车经过该站的次数是其它四路车经过该站的次数之和,若任意两路车不同时到站,求首先到站的公交车是张老师所等候的车的概率.(  )
A、.
1
4
B、.
3
4
C、.
3
5
D、
1
5

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,A地到火车站共有两条路径L1和L2,据统计,通过两条路径所用的时间互不影响,所用时间落在各时间段内的频率如下表:
所用时间(分钟) 10~20 20~30 30~40 40~50 50~60
L1的频率 0.1 0.2 0.3 0.2 0.2
L2的频率 0 0.1 0.4 0.4 0.1
现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站.
(Ⅰ)为了尽最大可能在各自允许的时间内赶到火车站,甲和乙应如何选择各自的路径?
(Ⅱ)用X表示甲、乙两人中在允许的时间内能赶到火车站的人数,针对(Ⅰ)的选择方案,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=ax(a>0且a≠1)在[1,2]上的最大值比最小值大
a
2
,则a的值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

为了检测某批棉花的质量,质检人员随机抽取6根,其平均纤维长度为25mm.用Xn(n=1,2,3,4,5,6)表示第n根棉花的纤维长度,且前5根棉花的纤维长度如下表:
编号n 1 2 3 4 5
Xn 20 26 22 20 22
(1)求X6及这6根棉花的标准差s;
(2)从这6根棉花中,随机选取2根,求至少有1根的长度在区间(20,25)内的概率.

查看答案和解析>>

同步练习册答案