精英家教网 > 高中数学 > 题目详情
已知函数f(x)=lnx-2x,(K是常数)
(1)求函数f(x)的单调区间;
(2)若f(x)<x恒成立,求K的取值范围.
分析:(1)由f(x)=lnx-2kx得,f′(x)=
1
x
-2k
,根据k的不同取值进行分类讨论,能求出函数f(x)的单调区间.
(2)由f(x)<x恒成立,得lnx-2kx-x<0恒成立,x∈(0,+∞).即2kx>lnx-x,由此入手,能够求出k的取值范围.
解答:解:(1)由f(x)=lnx-2kx,
f′(x)=
1
x
-2k
…(1分)
∵f(x)的定义域为(0,+∞),
∴当k≤0时,f′(x)=
1
x
-2k>0
,f(x)在(0,+∞)是增函数.   …(3分)
当k>0时,由
1
x
-2k>0
可得x<
1
2k

∴f(x)在(0,
1
2k
)是增函数,在(
1
2k
,+∞)是减函数.         …(5分)
综上,当k≤0时,f(x)的单调增区间是(0,+∞);
当K>0时,f(x)的单调增区间是(0,
1
2k
),单调减区间是(
1
2k
,+∞).…(6分)
(2)由f(x)<x恒成立,得lnx-2kx-x<0恒成立,x∈(0,+∞).
即2kx>lnx-x,
2k>
lnx
x
-1
恒成立. …(8分)
g(x)=
lnx
x
-1
,则g′(x)=
1-lnx
x2

g′(x)=
1-lnx
x2
=0
得x=e.
当0<x<e时,g′(x)>0,当x>e时,g′(x)<0,
∴g(x)在(0,e)上单调递增,在(e,+∞)上单调递减.               …(10分)
∴g(x)=
lnx
x
-1
在x=e时取得极大值g(e)=
1
e
-1

且为g(x)在(0,+∞)上的最大值.
2k>
1
e
-1,k>
1-e
2e
x2,y2…(11分)
∴k的取值范围是(
1-e
2e
,+∞)
.…(12分)
点评:本题考查函数的单调区间的求法,考查实数的取值范围的求法,考查化归与转化思想.综合性强,难度大,有一定的探索性,对数学思维能力要求较高,是高考的重点.解题时要认真审题,仔细解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2x-2+ae-x(a∈R)
(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;
(2)当a=1时,若直线l:y=kx-2与曲线y=f(x)在(-∞,0)上有公共点,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+2|lnx-1|.
(1)求函数y=f(x)的最小值;
(2)证明:对任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)对于函数f(x)图象上的不同两点A(x1,y1),B(x2,y2)(x1<x2),如果在函数f(x)图象上存在点M(x0,y0)(其中x0∈(x1,x2))使得点M处的切线l∥AB,则称直线AB存在“伴侣切线”.特别地,当x0=
x1+x2
2
时,又称直线AB存在“中值伴侣切线”.试问:当x≥e时,对于函数f(x)图象上不同两点A、B,直线AB是否存在“中值伴侣切线”?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线x+3y-1=0垂直,若数列{
1
f(n)
}的前n项和为Sn,则S2012的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xlnx
(Ⅰ)求函数f(x)的极值点;
(Ⅱ)若直线l过点(0,-1),并且与曲线y=f(x)相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)试就实数a的不同取值,写出该函数的单调增区间;
(2)已知当x>0时,函数在(0,
6
)上单调递减,在(
6
,+∞)上单调递增,求a的值并写出函数的解析式;
(3)记(2)中的函数图象为曲线C,试问是否存在经过原点的直线l,使得l为曲线C的对称轴?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案