精英家教网 > 高中数学 > 题目详情
函数f(x)=
ax2               x≥0
(a2-1)eax    x<0
在(-∞,+∞)上是单调函数的必要不充分条件是(  )
A.a≤-3或
3
2
≤a≤3
B.a≤1或a≥
3
C.a≤-1或a≥
3
2
D.a≤-
3
或1≤a≤3
函数f(x)=
ax2               x≥0
(a2-1)eax    x<0
,为分段函数,
(1)当函数f(x)=
ax2               x≥0
(a2-1)eax    x<0
在(-∞,+∞)上是单调增函数时,
当x≥0时,y=ax2为二次函数,图象是对称轴为y轴的抛物线,它为增函数时,有a>0;
当x<0时,f(x)=(a2-1)eax是增函数,它的导函数为f′(x)=a(a2-1)eax
令f′(x)≥0得-1≤a≤0或a≥1,且(a2-1)e0≤0即-1≤a≤1,
∴综合得a=1;
(2)当函数f(x)=
ax2               x≥0
(a2-1)eax    x<0
在(-∞,+∞)上是单调减函数时,
当x≥0时,y=ax2为二次函数,图象是对称轴为y轴的抛物线,它为减函数时,有a<0;
当x<0时,f(x)=(a2-1)eax是减函数,它的导函数为f′(x)=a(a2-1)eax
令f′(x)≤0得
0≤a≤1或a≤-1,
且(a2-1)e0≥0即a≤-1或a≥1,
∴综合得a≤-1.
综上所述,函数f(x)=
ax2               x≥0
(a2-1)eax    x<0
在(-∞,+∞)上是单调函数的充要条件是a≤-1或a=1,
∵选项D:“a≤-
3
或1≤a≤3
”?a≤-1或a=1,反之不成立.
∴选项D:“a≤-
3
或1≤a≤3
”是“f(x)在R上单调递增”的必要不充分条件.
故选D.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx(a,b是常数,且a≠0),f(2)=0,且方程f(x)=x有两个相等的实数根.
(1)求f(x)的解析式;
(2)当x∈[0,3]时,求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax2+bx+c(a≠0),曲线y=f(x)通过点(0,2a+3),且在x=1处的切线垂直于y轴.
(Ⅰ)用a分别表示b和c;
(Ⅱ)当bc取得最大值时,写出y=f(x)的解析式;
(Ⅲ)在(Ⅱ)的条件下,g(x)满足
43
f(x)-6
=(x-2)g(x)(x>2),求g(x)的最大值及相应x值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+ln(x+1).
(Ⅰ)当a=
1
4
时,求函数f(x)的单调区间;
(Ⅱ)当x∈[0,+∞)时,不等式f(x)≤x恒成立,求实数a的取值范围;
(Ⅲ)求证:(1+
2
2×3
)×(1+
4
3×5
)×(1+
8
5×9
)…(1+
2n
(2n-1+1)(2n+1)
)<e
(其中,n∈N*,e是自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数a,b,c(a≠0)满足
a
m+2
+
b
m+1
+
c
m
=0(m>0)
,对于函数f(x)=ax2+bx+c,af(
m
m+1
)
与0的大小关系是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+bx+1(a,b为实数),x∈R,F(x)=
f(x)(x>0)
-f(x)(x<0)

(1)若f(-1)=0,且函数f(x)的值域为[0,+∞),求F(x)的表达式;
(2)在(1)的条件下,当x∈[-2,2]时,g(x)=f(x)-kx是单调函数,求实数k的取值范围;
(3)设m•n<0,m+n>0,a>0且f(x)为偶函数,判断F(m)+F(n)能否大于零.

查看答案和解析>>

同步练习册答案