精英家教网 > 高中数学 > 题目详情
设函数f(x)=x-
1
x
-alnx(a∈R).
(Ⅰ)讨论函数f(x)的单调性.
(Ⅱ)若f(x)有两个极值点x1,x2,记过点A(x1,f(x1)),B(x2,f(x2))的直线斜率为k.问:是否存在a,使得k=2-a?若存在,求出a的值;若不存在,请说明理由.
(I)f(x)定义域为(0,+∞),
f′(x)=1+
1
x2
-
a
x
 =
x2-ax +1
x2

令g(x)=x2-ax+1,△=a2-4,
①当-2≤a≤2时,△≤0,f′(x)≥0,故f(x)在(0,+∞)上单调递增,
②当a<-2时,△>0,g(x)=0的两根都小于零,在(0,+∞)上,f′(x)>0,故f(x)在(0,+∞)上单调递增,
③当a>2时,△>0,g(x)=0的两根为x1=
a-
a2-4
2
,x2=
a+
a2-4
2

当0<x<x1时,f′(x)>0;当x1<x<x2时,f′(x)<0;当x>x2时,f′(x)>0;
故f(x)分别在(0,x1),(x2,+∞)上单调递增,在(x1,x2)上单调递减.
(Ⅱ)由(I)知,a>2.
因为f(x1)-f(x2)=(x1-x2)+
x1-x2
x1x2
-a(lnx1-lnx2),
所以k=
f(x1)-f(x2)
x1-x2
=1+
1
x1x2
-a
lnx1-lnx2
x1-x2

又由(I)知,x1x2=1.于是
k=2-a
lnx1-lnx2
x1-x2

若存在a,使得k=2-a,则
lnx1-lnx2
x1-x2
=1,即lnx1-lnx2=x1-x2
亦即x2-
1
x2
-2lnx2=0(x2>1)
   (*)
再由(I)知,函数h(t)=t-
1
t
-2Int
在(0,+∞)上单调递增,
而x2>1,
所以x2-
1
x2
-2Inx2
>1-1-2ln1=0,这与(*)式矛盾,
故不存在a,使得k=2-a.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)的定义域为A,若存在非零实数t,使得对于任意x∈C(C⊆A),有x+t∈A,且f(x+t)≤f(x),则称f(x)为C上的t低调函数.如果定义域为[0,+∞)的函数f(x)=-|x-m2|+m2,且 f(x)为[0,+∞)上的10低调函数,那么实数m的取值范围是(  )
A、[-5,5]
B、[-
5
5
]
C、[-
10
10
]
D、[-
5
2
5
2
]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)是定义在R上的偶函数,且f(x+2)=f(x)恒成立;当x∈[0,1]时,f(x)=x3-4x+3.有下列命题:
f(-
3
4
) <f(
15
2
)

②当x∈[-1,0]时f(x)=x3+4x+3;
③f(x)(x≥0)的图象与x轴的交点的横坐标由小到大构成一个无穷等差数列;
④关于x的方程f(x)=|x|在x∈[-3,4]上有7个不同的根.
其中真命题的个数为(  )

查看答案和解析>>

科目:高中数学 来源:徐州模拟 题型:解答题

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为2
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案