精英家教网 > 高中数学 > 题目详情

如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB交PB于点F.

(1)证明PA∥平面EDB;

(2)证明PB⊥平面EFD.

答案:
解析:

  解:(1)证明:连结AC,AC交BD于O,连结EO.

  ∵底面ABCD是正方形,∴点O是AC的中点

  在中,EO是中位线,∴PA∥EO  3分

  而平面EDB且平面EDB,

  所以,PA∥平面EDB  6分

  (2)证明:

  ∵PD⊥底面ABCD且底面ABCD,

  ∴

  ∵PD=DC,可知是等腰直角三角形,而DE是斜边PC的中线,

  ∴ ①  8分

  同理由PD⊥底面ABCD,得PD⊥BC.

  ∵底面ABCD是正方形,有DC⊥BC,∴BC⊥平面PDC.

  而平面PDC,∴ ②

  由①和②推得平面PBC  10分

  而平面PBC,∴

  又∵EF⊥PB,∴PB⊥平面EFD  12分


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在四棱锥P-ABCD中,底面ABCD是边长为a的正方形,且PD=a,PA=PC=
2
a

(1)求证:PD⊥平面ABCD;(2)求二面角A-PB-D的平面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,且AD∥BC,∠ABC=∠PAD=
90°,侧面PAD⊥底面ABCD.若PA=AB=BC=
12
AD.
(Ⅰ)求证:CD⊥平面PAC;
(Ⅱ)侧棱PA上是否存在点E,使得BE∥平面PCD?若存在,指出点E的位置并证明,若不存在,请说明理由;
(Ⅲ)求二面角A-PD-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在四棱锥P-ABCD中,底面ABCD为等腰梯形,AB∥CD,AD=BC=2,对角线AC⊥BD于O,∠DAO=60°,且PO⊥平面ABCD,直线PA与底面ABCD所成的角为60°,M为PD上的一点.
(Ⅰ)证明:PD⊥AC;
(Ⅱ)求二面角A-PB-D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在四棱锥P-ABCD中,底面ABCD是边长为1的正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB交PB于点F.
(1)证明PB⊥平面EFD;
(2)求二面角C-PB-D的大小.
(3)求点A到面EBD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PD⊥底面ABCD,底面ABCD为正方形,PD=DC,E,F分别是AB,PB的中点.
(1)求证:EF∥平面PAD;
(2)求证:EF⊥CD;
(3)设PD=AD=a,求三棱锥B-EFC的体积.

查看答案和解析>>

同步练习册答案