精英家教网 > 高中数学 > 题目详情
设O点是正△ABC的中心,则向量是(    )

A.有相同起点的向量   B.平行向量  C.模相等的向量  D.相等向量

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

选考题
请从下列三道题当中任选一题作答,如果多做,则按所做的第一题计分,请在答题卷上注明题号.
22-1设函数f(x)=|2x-1|+|2x-3|
(1)解不等式f(x)≤5x+1;
(2)若g(x)=
1
f(x)+m
定义域为R,求实数m的取值范围.
22-2如图,在△ABC中,CD是∠ACB的角平分线,△ACD的外接圆交BC于E,AB=2AC,
(1)求证:BE=2AD;
(2)当AC=1,BC=2时,求AD的长.
22-3已知P为半圆C:
x=cosθ
y=sinθ
(θ为参数,0≤θ≤π)
上的点,点A的坐标为(1,0),O为坐标原点,点M在射线OP上,线段OM与半圆C上的弧AP的长度均为
π
3

(1)求以O为极点,x轴的正半轴为极轴建立极坐标系,求点M的极坐标;
(2)求直线AM的参数方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

用向量探索几何的性质:
(1)在△ABC中,D是线段BC的中点,证明:
AB
+
AC
=2
AD

(2)把此结论推广到四面体:设四面体ABCD,点O是三角形BCD的重心,探究
AB
AC
AD
AO
的等量关系,并说明理由;
(3)进一步探索,确定正n棱锥P-A1A2A3…An的底面多边形内一点O的位置,并写出向量:
PA1
PA2
、…、
PAn
PO
的等量关系.(不必证明)

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知A是抛物线y=
1
4
x2
上的动点,B、C两点分别在x轴的正、负半轴上,圆M:x2+(y-2)2=4内切于△ABC,切点分别为T1,T2和原点O,设BC=m,AT1=n.
(Ⅰ)证明:
1
m
+
1
n
为定值.
(Ⅱ)已知点A在第一象限,且当△ABC周长最小时,试求△ABC的外接圆方程.

查看答案和解析>>

科目:高中数学 来源:2011年江苏省南通市通州高级中学高考综合测试数学试卷(解析版) 题型:解答题

已知A是抛物线上的动点,B、C两点分别在x轴的正、负半轴上,圆M:x2+(y-2)2=4内切于△ABC,切点分别为T1,T2和原点O,设BC=m,AT1=n.
(Ⅰ)证明:为定值.
(Ⅱ)已知点A在第一象限,且当△ABC周长最小时,试求△ABC的外接圆方程.

查看答案和解析>>

同步练习册答案