精英家教网 > 高中数学 > 题目详情
在△ABC中,内角A,B,C对边的边长分别是a,b,c,已知c=2,
(1)若△ABC的面积等于,求a,b;
(2)若sinB=2sinA,求△ABC的面积.
【答案】分析:(1)由c及cosC的值,利用余弦定理列出关于a与b的关系式a2+b2-ab=4,再由已知三角形的面积及sinC的值,利用三角形的面积公式得出ab的值,与a2+b2-ab=4联立组成方程组,求出方程组的解即可求出a与b的值;
(2)利用正弦定理化简sinB=2sinA,得到b=2a,与(1)得出的a2+b2-ab=4联立组成方程组,求出方程组的解得到a与b的值,再由sinC的值,利用三角形的面积公式即可求出三角形ABC的面积.
解答:解:(1)∵c=2,cosC=
∴由余弦定理c2=a2+b2-2abcosC得:a2+b2-ab=4,
又△ABC的面积等于,sinC=

整理得:ab=4,(4分)
联立方程组
解得a=2,b=2;(6分)
(2)由正弦定理,把sinB=2sinA化为b=2a,(8分)
联立方程组
解得:
又sinC=
则△ABC的面积.(10分)
点评:此题属于解三角形的题型,涉及的知识有:正弦、余弦定理,三角形的面积公式,以及特殊角的三角函数值,熟练掌握定理及公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•天津)在△ABC中,内角A,B,C所对的边分别是a,b,c,已知a=2,c=
2
,cosA=-
2
4

(1)求sinC和b的值;
(2)求cos(2A+
π
3
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A、B、C所对边长分别为a、b、c,已知a2-c2=b,且sinAcosC=3cosAsinC,则b=
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A,B,C的对边分别为a,b,c,且a,b是方程x2-2
3
x+2=0的两根,2cos(A+B)=1,则△ABC的面积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A,B,C所对的边分别是a,b,c.已知A=45°,a=6,b=3
2
,则B的大小为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A,B,C所对的边分别是a,b,c,已知B=60°,不等式x2-4x+1<0的解集为{x|a<x<c},则b=
13
13

查看答案和解析>>

同步练习册答案