精英家教网 > 高中数学 > 题目详情
如图,正三棱柱ABC﹣A1B1C1中,E是AC中点.
(1)求证:平面BEC1⊥平面ACC1A1
(2)求证:AB1∥平面BEC1
(3)若,求二面角E﹣BC1﹣C的大小.
(Ⅰ)证明:∵ABC﹣A1B1C1是正三棱柱,
∴AA1⊥平面ABC,
∴BE⊥AA1
∵△ABC是正三角形,E是AC中点,
∴BE⊥AC,
∴BE⊥平面ACC1A1
∴BE平面BEC1
∴平面BEC1⊥平面ACC1A1
(Ⅱ)证明:连B1C,设BC1∩B1C=D.
∵ABC﹣A1B1C1是正三棱柱,
∴BCC1B1是矩形,D是B1C的中点.
∵E是AC的中点,
∴AB1∥DE.
∵DE平面BEC1,AB1平面BEC1
∴AB1∥平面BEC1
(Ⅲ)解:作CF⊥BC1于F,FG⊥BC1于G;连CG.
∵平面BEC1⊥平面ACC1A,
∴CF⊥平面BEC1
∴FG是CG在平面BEC1上的射影.根据三垂线定理得,CG⊥BC1
∴∠CGF是二面角E﹣BC1﹣C的平面角.
设AB=a,∵
在Rt△ECC1中,CF=
在Rt△BCC1中,CG=
在Rt△CFG中,∵
∴∠CGF=45°.
∴二面角E﹣BC1﹣C的大小是45°
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,正三棱柱ABC-A1B1C1各棱长都等于a,E是BB1的中点.
(1)求直线C1B与平面A1ABB1所成角的正弦值;
(2)求证:平面AEC1⊥平面ACC1A1
(3)求点C1到平面AEC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,正三棱柱ABC-A1B1C1的各棱长都2,E,F分别是AB,A1C1的中点,则EF的长是(  )
A、2
B、
3
C、
5
D、
7

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正三棱柱ABC-A1B1C1的所有棱长都为2,D为CC1中点.
(Ⅰ)求证:AB1⊥平面A1BD;
(Ⅱ)求二面角A-A1D-B的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•郑州二模)如图,正三棱柱ABC-A1B1C1的所有棱长都为2,D为CC1中点.
(Ⅰ)求证:AB1⊥面A1BD;
(Ⅱ)设点O为AB1上的动点,当OD∥平面ABC时,求
AOOB1
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,正三棱柱ABC-A1B1C1中(注:底面为正三角形且侧棱与底面垂直),BC=CC1=2,P,Q分别为BB1,CC1的中点.
(Ⅰ)求多面体ABC-A1PC1的体积;
(Ⅱ)求A1Q与BC1所成角的大小.

查看答案和解析>>

同步练习册答案