精英家教网 > 高中数学 > 题目详情
已知函数f(x)=是定义在(-1,1)上的奇函数,且f()=
(1)确定函数f(x)的解析式
(2)解不等式f(x-1)﹢f(x)<0.
【答案】分析:(1)由函数f(x)=是定义在(-1,1)上的奇函数,且f()=,知,由此能求出f(x).
(2)由f(x)=在(-1,1)是增函数,f(x)是奇函数,且f(x-1)﹢f(x)<0,知f(x-1)<-f(x)=f(-x),故-1<x-1<-x<1,由此能解出不等式f(x-1)﹢f(x)<0.
解答:解:(1)∵函数f(x)=是定义在(-1,1)上的奇函数,且f()=

解得a=1,b=0.
∴f(x)=
(2)∵f(x)=在(-1,1)是增函数,f(x)是奇函数,
且f(x-1)﹢f(x)<0,
∴f(x-1)<-f(x)=f(-x),
∴-1<x-1<-x<1,
解得0<x<
点评:本题考查函数的解析式的求法,考查不等式的解法.解题时要认真审题,仔细解答,注意函数的单调性、奇偶性的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

13、已知函数f(x+1)是奇函数,则函数f(x-1)的图象关于
(2,0)
对称.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x+1)是偶函数,当x2>x1>1时,[f(x2)-f(x1)]( x2-x1)>0恒成立,设a=f (-
1
2
),b=f(2),c=f(3),则a,b,c的大小关系为(  )
A、b<a<c
B、c<b<a
C、b<c<a
D、a<b<c

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f (x+1)是奇函数,f (x-1)是偶函数,且f (0)=2,则f (2012)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x+1)是偶函数,当1<x1<x2时,
f(x2)-f(x1)
x2-x1
>0
恒成立,设a=f(-
1
2
),b=f(2),c=f(3),则a,b,c的大小关系为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x+1)是偶函数,当x2>x1>1时,[f(x2)-f(x1)](x2-x1)>0恒成立,设a=f(-
12
),b=f(2),c=f(3)
,则a,b,c的大小关系为(按从小到大)
b<a<c
b<a<c

查看答案和解析>>

同步练习册答案