精英家教网 > 高中数学 > 题目详情

在直角坐标系xO y中,已知△AOB三边所在直线方程分别为x=0,y=0,2x+3y=030,在△AOB内部和边上整点(即横、纵坐标均为整数的点)的总数是

[  ]

A.95
B.91
C.88
D.75

答案:B
解析:

解析1:由转化为求满足不等式

所有整数y的值,然后再求其总数.

x0y11个整数;x1y10个;x23时,y各有9个;x4时,y8个;x56时,y分别有7个;类推,x13时,y2个;x1415时,y分别有1个,共91个整点.

解析2:将x0y02x3y30所围成的三角形补成一个矩形.如图所示.

对角线上共有6个整点,矩形中(含边界)共有16×11176个.因此所求△AOB内部和边上的整点共有()


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

本题设有(1)(2)(3)三个选考题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.
(1)已知矩阵M=
1a
b1
N=
c2
0d
,且MN=
20
-20

(Ⅰ)求实数a,b,c,d的值;(Ⅱ)求直线y=3x在矩阵M所对应的线性变换下的像的方程.
(2)在直角坐标系xoy中,直线l的参数方程为
x=3-
2
2
t
y=
5
-
2
2
t
(t为参数).在极坐标系(与直角坐标系xoy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为ρ=2
5
sinθ

(Ⅰ)求圆C的直角坐标方程;(Ⅱ)设圆C与直线l交于点A、B,若点P的坐标为(3,
5
)

求|PA|+|PB|.
(3)已知函数f(x)=|x-a|.
(Ⅰ)若不等式f(x)≤3的解集为{x|-1≤x≤5},求实数a的值;
(Ⅱ)在(Ⅰ)的条件下,若f(x)+f(x+5)≥m对一切实数x恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

本题共有(1)、(2)、(3)三个选答题,每题7分,请考生任选2题作答,满分14分.如果多做,则以所做的前2题计分.
(1)选修4-2:矩阵与变换
已知二阶矩阵M有特征值λ=3及对应的一个特征向量e1=
1
1
,并且矩阵M对应的变换将点(-1,2)变换成(9,15).求矩阵M.
(2)选修4-4:坐标系与参数方程
在直角坐标系xOy中,已知曲线C的参数方程是
x=2+2sinα
y=2cosα
(α是参数).
现以原点O为极点,x轴的正半轴为极轴,建立极坐标系,写出曲线C的极坐标方程.
(3)选修4-5:不等式选讲
解不等式|2x+1|-|x-4|>2.

查看答案和解析>>

科目:高中数学 来源: 题型:

(三选一,考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)
(1)(坐标系与参数方程选做题)在直角坐标系中圆C的参数方程为
x=1+2cosθ
y=
3
+2sinθ
(θ为参数),则圆C的普通方程为
(x-1)2+(y-
3
)2=4
(x-1)2+(y-
3
)2=4

(2)(不等式选讲选做题)设函数f(x)=|2x+1|-|x-4|,则不等式f(x)>2的解集为
{x|x<-7或x>
5
3
}
{x|x<-7或x>
5
3
}

(3)(几何证明选讲选做题) 如图所示,等腰三角形ABC的底边AC长为6,其外接圆的半径长为5,则三角形ABC的面积是
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

选做题:(本小题共3小题,请从这3题中选做2小题,如果3题都做,则按所做的前两题记分,每小题7分.)
(1)(矩阵与变换)在直角坐标系中,已知△ABC的顶点坐标为A(0,0)、B(1,1)、C(0,2),矩阵M=
01
10
,N=
0-1
10
,求△ABC在矩阵MN作用下变换所得的图形的面积;
(2)(坐标系与参数方程)极坐标系下,求直线ρcos(θ+
π
3
)=1
与圆ρ=
2
的公共点个数;
(3)(不等式)已知x+2y=1,求x2+y2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

本题有(1)、(2)、(3)三个选答题,每小题7分,请考生任选2题作答,满分14分,如果多做,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.
(1)选修4-2:矩阵与变换
已知矩阵M=
01
10
,N=
0-1
10

(Ⅰ)求矩阵NN;
(Ⅱ)若点P(0,1)在矩阵M对应的线性变换下得到点P′,求P′的坐标.
(2)选修4-4:坐标系与参数方程
在直角坐标系xOy中,直线l的参数方程是
x=t
y=2t+1
(t为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的极坐标方程是ρ=2cosθ(Ⅰ)在直角坐标系xOy中,求圆C的直角坐标方程
(Ⅱ)求圆心C到直线l的距离.
(3)选修4-5:不等式选讲
已知函数f(x)=|x-1|
(Ⅰ)解不等式f(x)>2;
(Ⅱ)求函数y=f(-x)+f(x+5)的最小值.

查看答案和解析>>

同步练习册答案