精英家教网 > 高中数学 > 题目详情
如图,直角梯形ABDCABCDABCDS是直角梯形ABDC所在平面外的一点,画出平面SBD和平面SAC的交线.

 

思路解析:点S是平面SBD和平面SAC的一个公共点,即点S在交线上.要找到两平面的交线,只需再找到一个公共点即可.

解:由于ABCD,则分别延长ACBD交于点E,如右图所示.

EAC,AC平面SAC,∴E∈平面SAC.

同理,可证E∈平面SBD.∴点E在平面SBD和平面SAC的交线上.连结SE,则直线SE是面SBD和面SAC的交线.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如右图,在直角梯形ABCD中,∠B=90°,DC∥AB,BC=CD=
12
AB=2,G为线段AB的中点,将△ADG沿GD折起,使平面ADG⊥平面BCDG,得到几何体A-BCDG.
(1)若E,F分别为线段AC,AD的中点,求证:EF∥平面ABG;
(2)求证:AG⊥平面BCDG;
(3)求VC-ABD的值
精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•福建模拟)在直角梯形ABCD中,AD∥BC,AB=1,AD=
3
,AB⊥BC,CD⊥BD,如图1.把△ABD沿BD翻折,使得平面A′BD⊥平面BCD,如图2.

(Ⅰ)求证:CD⊥A′B;
(Ⅱ)求三棱锥A′-BDC的体积;
(Ⅲ)在线段BC上是否存在点N,使得A′N⊥BD?若存在,请求出
BN
BC
的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•福建模拟)在直角梯形ABCD中,AD∥BC,BC=2AD=2AB=2
2
,∠ABC=90°,如图1.把△ABD沿BD翻折,使得平面ABD⊥平面BCD,如图2.
(Ⅰ)求证:CD⊥AB;
(Ⅱ)若点M为线段BC中点,求点M到平面ACD的距离;
(Ⅲ)在线段BC上是否存在点N,使得AN与平面ACD所成角为60°?若存在,求出
BN
BC
的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直角梯形ABCD中,AB∥CD,AB⊥AD,且AD=1,AB=2,CD=3,E、F分别为线段CD、AB上的点,且EF∥AD.将梯形沿EF折起,使得平面ADEF⊥平面BCEF,折后BD与平面ADEF所成角正切值为
2
2

(Ⅰ)求证:BC⊥平面BDE;
(Ⅱ)求平面BCEF与平面ABD所成二面角(锐角)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•许昌二模)在直角梯形ABCD中,AD∥BC,AB=1,AD=
3
,AB⊥BC,CD⊥BD,如图1,把△ABD沿BD翻折,使得平面A'BD⊥平面BCD,如图2.
(Ⅰ)求证:CD⊥A'B;
(Ⅱ)求三棱锥A'-BDC的体积.

查看答案和解析>>

同步练习册答案