如图,在四棱锥P-ABCD中,底面ABCD为平行四边形,∠ADC=45°,AD=AC=1,O为AC的中点,PO⊥平面ABCD,PO=2,M为PD的中点.
(1)证明PB∥平面ACM;
(2)证明AD⊥平面PAC;
(3)求直线AM与平面ABCD所成角的正切值.
![]()
解:(1)证明:连接BD,MO,在平行四边形ABCD中,因为O为AC的中点,所以O为BD的中点.又M为PD的中点,所以PB∥MO.因为PB⊄平面ACM,MO⊂平面ACM,所以PB∥平面ACM.
(2)证明:因为∠ADC=45°,且AD=AC=1,所以∠DAC=90°,即AD⊥AC.又PO⊥平面ABCD,AD⊂平面ABCD,所以PO⊥AD.而AC∩PO=O,所以AD⊥平面PAC.
(3)取DO中点N,连接MN,AN.因为M为PD的中点,所以MN∥PO,且MN=
PO=1.由PO⊥平面ABCD,得MN⊥平面ABCD,所以∠MAN是直线AM与平面ABCD所成的角.在Rt△DAO中,AD=1,AO=
,所以DO=
.从而AN=
DO=
.在Rt△ANM中,tan∠MAN=
=
=
,即直线AM与平面ABCD所成角的正切值为
.![]()
科目:高中数学 来源: 题型:
| 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
| 1 | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com