精英家教网 > 高中数学 > 题目详情
求证:.

活动:先让学生讨论探究证明方法,教师引导思考方向.教材中介绍了两种证明方法:证法一是从等式一边到另一边的证法,等式右边的非零因式1+sinα,在左边没有出现,可考虑左边式子的分子、分母同乘以1+sinx,再化简;在证法二中可以这样分析,要让算式成立,需证cos2x=(1+sinx)(1-sinx),即cos2x=1-sin2x,也就是sin2x+cos2x=1,由平方关系可知这个等式成立,将上述分析过程逆推便可以证得原式成立.证明三角恒等式的过程,实际上是化异为同的过程.这个过程往往从化简开始,因此在证明三角恒等式时,我们可以从最复杂处开始.

证法一:由cosx≠0,知sinx≠±1,所以1+sinx≠0,于是

左边==右边.

所以原式成立.

证法二:因为(1-sinx)(1+sinx)=1-sin2x=cos2x=cosxcosx,

且1-sinx≠0,cosx≠0,所以.

    教师启发学生进一步探究:除了证法一和证法二外你是否还有其他的证明方法.教师和学生一起讨论,由此可探究出证法三.依据“a-b=0a=b”来证明恒等式是常用的证明方法,由学生自己独立完成.

证法三:因为

==0,所以.

点评:这是一道很有训练价值的经典例题,教师要充分利用好这个题目.从这个例题可以看出,证明一个三角恒等式的方法有很多.要证明一个等式,可以从它的任何一边开始,证得它等于另一边;还可以先证得另一个等式成立,从而推出需要证明的等式成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)的定义域为(0,+∞),对定义域内的任意x,y都有f(xy)=f(x)+f(y)-3
(1)求f(1)的值;
(2)求证:f(x)+f(
1x
)=6(x>0)

(3)若x>1时,f(x)<3,判断f(x)在其定义域上的单调性,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

在某两个正数x,y之间,若插入一个正数a,使x,a,y成等比数列;若插入两个正数b,c,使x,b,c,y成等差数列,求证:(a+1)2≤(b+1)(c+1).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知cosθ=
cosα-cosβ
1-cosαcosβ
,求证:tan2
θ
2
=tan2
α
2
cot2
β
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:α,β为锐角,且3sin2α+2sin2β=1,3sin2α-2sin2β=0.求证:α+2β=
π2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A、B、C同时满足sinA+sinB+sinC=0,cosA+cosB+cosC=0,求证:cos2A+cos2B+cos2C为定值.

查看答案和解析>>

同步练习册答案