精英家教网 > 高中数学 > 题目详情
过双曲线
x2
a2
-
y2
b2
=1 (a>0,b>0)
的左焦点F1作圆x2+y2=a2的切线交双曲线右支于点P,切点为T,F1P中点M在第一象限,则以下正确的是(  )
分析:先从双曲线方程得:a,b.连OT,则OT⊥F1T,在直角三角形OTF1中,|F1T|=b.连PF2,M为线段F1P的中点,O为坐标原点得出|MO|-|MT|=
1
2
PF2-(
1
2
MF1-F1T)=
1
2
(PF2-MF1)-b最后结合双曲线的定义得出答案.
解答:解:连OT,则OT⊥F1T,
在直角三角形OTF1中,|F1T|=
OF 1 2 -OT 2
=
c 2-a 2
=b.
连PF2,M为线段F1P的中点,O为坐标原点
∴OM=
1
2
PF2
∴|MO|-|MT|=
1
2
PF2-(
1
2
PF1-F1T)=
1
2
(PF2-PF1)-b
=
1
2
×2a-b
=a-b.
故选C.
点评:本题主要考查椭圆的定义及三角形中位线和直线与圆相切时应用勾股定理.解答的关键是熟悉双曲线的定义的应用,直线与圆的位置关系以及三角形中的有关结论.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

过双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)的一个焦点F引它的渐近线的垂线,垂足为M,延长FM交y轴于E,若FM=ME,则该双曲线的离心率为(  )
A、3
B、2
C、
3
D、
2

查看答案和解析>>

科目:高中数学 来源: 题型:

过双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)的右焦点F作圆x2+y2=a2的切线FM(切点为M),交y轴于点P.若M为线段FP的中点,则双曲线的离心率是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

过双曲线
x2
a2
-
y2
b2
=1
的左焦点F作⊙O:x2+y2=a2的两条切线,记切点为A,B,双曲线左顶点为C,若∠ACB=120°,则双曲线的渐近线方程为(  )
A、y=±
3
x
B、y=±
3
3
x
C、y=±
2
x
D、y=±
2
2
x

查看答案和解析>>

科目:高中数学 来源: 题型:

过双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的一个焦点F引它到渐进线的垂线,垂足为M,延长FM交y轴于E,若
FM
=2
ME
,则该双曲线离心率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

过双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的一个焦点F作一条渐近线的平行线,该平行线与y轴交于点P,若|OP|=|OF|,则双曲线的离心率为(  )

查看答案和解析>>

同步练习册答案