精英家教网 > 高中数学 > 题目详情

已知函数f(x)=2x-1,对于满足0<x1<x2的任意x1,x2,给出下列结论:
(1)(x2-x1)[f(x2)-f(x1)]<0  (2)x2f(x1)<x1f(x2
(3)f(x2)-f(x1)>x2-x1      (4)数学公式>f(数学公式
其中正确结论的序号是


  1. A.
    (1)(2)
  2. B.
    (1)(3)
  3. C.
    (2)(4)
  4. D.
    (3)(4)
C
分析:本题要借助指数函数的图象与性质来研究,对四个命题的形式加以变化变成规范的形式,利用相关的性质判断即可.
对于选项(1)由于)(x2-x1)[f(x2)-f(x1)]<0 等价于<0故可借助函数的图象的单调性得出结论
对于选项(2)由于x2f(x1)<x1f(x2)等价于,可借助函数图象上点的几何意义得出结论
对于选项(3)由于f(x2)-f(x1)>x2-x1?,故可借助函数的图象上点的切线斜率变化规律得出结论
对于选项(4)>f()说明函数是一个凹函数,以此由函数图象即可得出结论.
解答:解(1)∵f(x)=2x-1为R上的单调增函数,故满足0<x1<x2的任意x1,x2,总有f(x1)<f(x2),即f(x2)-f(x1)>0,∴(x2-x1)[f(x2)-f(x1)]>0,故(1)错误;
(2)设y===,其几何意义为f(x)图象上的点与原点连线斜率,由函数f(x)=2x-1在(0,+∞)上的图象可知y=为增函数,∵0<x1<x2
,即x2f(x1)<x1f(x2),(2)正确;
(3)∵函数f′(x)=2xln2,由x>0,∴2xln2∈(ln2,+∞),即存在x0,使f′(x0)<1,而f(x2)-f(x1)>x2-x1??函数f(x)在所给的区间上导数值恒大于1,∴(3)错误;
(4)>f()反映函数f(x)为凹函数,由f(x)=2x-1的图象可知此函数在(0,+∞)上确为凹函数,(4)正确
故正确结论的序号是:(2)、(4)
故选 C
点评:本题考查指数函数的图象,以及指数函数的单调性、凸凹性、变化率等性质的抽象表达,数形结合解决问题的思想方法
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2-
1
x
,(x>0),若存在实数a,b(a<b),使y=f(x)的定义域为(a,b)时,值域为(ma,mb),则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2+log0.5x(x>1),则f(x)的反函数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(m-1)x2-4mx+2m-1
(1)m为何值时,函数的图象与x轴有两个不同的交点;
(2)如果函数的一个零点在原点,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•上海)已知函数f(x)=2-|x|,无穷数列{an}满足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4
(2)若a1>0,且a1,a2,a3成等比数列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差数列?若存在,求出所有这样的a1,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲
已知函数f(x)=2|x-2|-x+5,若函数f(x)的最小值为m
(Ⅰ)求实数m的值;
(Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案