精英家教网 > 高中数学 > 题目详情
精英家教网在三棱柱ABC-A1B1C1中,AC=BC=2,AB=AA1=2
2
,且AA1⊥底面ABC,点D是AB的中点,点E是BB1的中点.
(1)求证:A1B⊥平面CDE;
(2)求直线A1C与平面CDE所成的角;
(3)求三棱锥A1-CDEDE 体积.
分析:(1)欲证A1B⊥平面CDE,只需证明A1B垂直平面CDE内两条相交直线即可,而A1B⊥DE,CD⊥A1B,CD∩DE=D,CD,DE?面CDE,满足线面垂直的判定定理,结论得证;
(2)根据CF为A1C在面CDE上的射影,则∠A1CF是A1C和面CDE所成的角,在Rt△A1FC中求出此角即可;
(3)在Rt△CDE中,求出CD,DE的长,以及S△CDE=
2
,最后根据三棱锥的体积公式进行求解即可.
解答:解:(1)∵AA1⊥底面ABC,CD?面ABC
∴AA1⊥CD
∵AC=BC,点D是AB的中点
∴AB⊥CD
∵AA1∩AB=A,AA1,AB?面A1ABB1∴CD⊥面A1ABB1
∵A1B?面A1ABB1
∴CD⊥A1B
∵正方形A1ABB1中,DE∥AB1,A1B⊥AB1
∴A1B⊥DE
∵CD∩DE=D,CD,DE?面CDE
∴A1B⊥面CDE
(2)设AB1∩DE=F,
∵A1B⊥面CDE∴CF为A1C在面CDE上的射影
∴∠A1CF是A1C和面CDE所成的角
在Rt△A1FC中,A1F=3,A1C=2
3
,∴sin∠A1CF=
A1F
A1C
=
3
2

∴∠A1CF=60°,∴A1C和面CDE所成的角为60°
(3)在Rt△CDE中,CD=
2
,DE=2,∴S△CDE=
2

VA1-CDE=
1
3
×S△CDE×A1F=
2
点评:本题主要考查了线面垂直的判定定理以及线面所成角的度量和体积的计算,同时考查了计算能力和论证推理能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知三棱柱ABC-A1B1C1的三视图如图所示,其中主视图AA1B1B和左视图B1BCC1均为矩形,在俯视图△A1B1C1中,A1C1=3,A1B1=5,cos∠A1=
35

(1)在三棱柱ABC-A1B1C1中,求证:BC⊥AC1
(2)在三棱柱ABC-A1B1C1中,若D是底边AB的中点,求证:AC1∥平面CDB1
(3)若三棱柱的高为5,求三视图中左视图的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图:在正三棱柱ABC-A1 B1 C1中,AB=
AA13
=a,E,F分别是BB1,CC1上的点且BE=a,CF=2a.
(Ⅰ)求证:面AEF⊥面ACF;
(Ⅱ)求三棱锥A1-AEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在三棱柱ABC-A1B1C1中,已知AB=AC=AA1=
5
,BC=4,在A1在底面ABC的投影是线段BC的中点O.
(1)求点C到平面A1ABB1的距离;
(2)求二面角A-BC1-B1的余弦值;
(3)若M,N分别为直线AA1,B1C上动点,求MN的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江西)在三棱柱ABC-A1B1C1中,已知AB=AC=AA1=
5
,BC=4,在A1在底面ABC的投影是线段BC的中点O.
(1)证明在侧棱AA1上存在一点E,使得OE⊥平面BB1C1C,并求出AE的长;
(2)求平面A1B1C与平面BB1C1C夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•北京)如图,在三棱柱ABC-A1B1C1中,AA1C1C是边长为4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.
(Ⅰ)求证:AA1⊥平面ABC;
(Ⅱ)求证二面角A1-BC1-B1的余弦值;
(Ⅲ)证明:在线段BC1上存在点D,使得AD⊥A1B,并求
BDBC1
的值.

查看答案和解析>>

同步练习册答案