精英家教网 > 高中数学 > 题目详情

如图正四棱柱ABCD-A1B1C1D1,AA1=2AB=4,ECC1CE=λCC1

(1)λ为何值时,A1C⊥平面BDE?

(2)若A1C⊥平面BDE,求二面角A1―BD―E的大小.

答案:
解析:

  解:(1)根据题意,建立如图的空间直角坐标系.

  则

  所以

  

  要使平面,那么,所以必有

  

  且

  故

  (2)设向量是平面的一个法向量,那么

  

  

  所以

  又是平面的一个法向量.

  且

  又由图知,二面角是锐二面角,所以二面角的大小就是


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图是正三棱柱ABC-A1B1C1,AA1=3,AB=2,若N为棱AB中点.
(1)求证:AC1∥平面CNB1
(2)求四棱锥C1-ANB1A1的体积.

查看答案和解析>>

科目:高中数学 来源:2013届安徽省高二上学期期中考试理科数学 题型:解答题

(本小题满分12分)如图是正三棱柱ABC-A1B1C1,AA1=3,AB=2,若N为棱AB的中点.

(1)求证:AC1∥平面CNB1

(2)求四棱锥C-ANB1A1的体积.

 

 

 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图是正三棱柱ABC-A1B1C1,AA1=3,AB=2,若N为棱AB中点.
(1)求证:AC1∥平面CNB1
(2)求四棱锥C1-ANB1A1的体积.

查看答案和解析>>

科目:高中数学 来源:安徽省期中题 题型:解答题

如图是正三棱柱ABC﹣A1B1C1,AA1=3,AB=2,若N为棱AB中点.
(1)求证:AC1∥平面CNB1
(2)求四棱锥C1﹣ANB1A1的体积.

查看答案和解析>>

科目:高中数学 来源:安徽省期中题 题型:解答题

如图是正三棱柱ABC﹣A1B1C1,AA1=3,AB=2,若N为棱AB中点.
(1)求证:AC1∥平面CNB1
(2)求四棱锥C1﹣ANB1A1的体积.

查看答案和解析>>

同步练习册答案