精英家教网 > 高中数学 > 题目详情
f(x)=f(x)=10,则x=           .

-3

解析:因为当x>0时,f(x)=-2x<0,

所以x2+1=10,解得x=±3.

又因为x≤0,

所以x=-3.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(理科)已知函数f(x)=alnx-ax-3(a∈R).
(1)讨论函数f(x)的单调性;
(2)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,对任意的t∈[1,2],若函数g(x)=x3+x2[f/(x)+
m
2
]
在区间(t,3)上有最值,求实数m取值范围;
(3)求证:ln(22+1)+ln(32+1)+ln(42+1)+…+ln(n2+1)<1+2lnn!(n≥2,n∈N*
(文科) 已知函数f(x)=ax3+
1
2
x2-2x+c

(1)若x=-1是f(x)的极值点且f(x)的图象过原点,求f(x)的极值;
(2)若g(x)=
1
2
bx2-x+d
,在(1)的条件下,是否存在实数b,使得函数g(x)的图象与函数f(x)的图象恒有含x=-1的三个不同交点?若存在,求出实数b的取值范围;否则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|x2-1|,g(x)=k|x-1|.
(Ⅰ)已知0<m<n,若f(m)=f(n),求m2+n2的值;
(Ⅱ)设F(x)=
f(x),f(x)≥g(x)
g(x),f(x)<g(x)
,当k=
1
2
时,求F(x)在(-∞,0)上的最小值;
(Ⅲ)求函数G(x)=f(x)+g(x)在区间[-2,2]上的最大值.

查看答案和解析>>

科目:高中数学 来源:黑龙江省哈一中2012届高三上学期期中考试数学文科试题(人教版) 人教版 题型:013

对任意的实数a,b,记max{a,b}=若F(x)=max{f(x),g(x)}(x∈R),其中奇函数y=f(x)在x=1时有极小值-2,y=g(x)是正比例函数,函数y=f(x)(x≥0)与函数y=g(x)的图象如图所示则下列关于函数y=F(x)的说法中,正确的是

[  ]

A.y=F(x)为奇函数

B.y=F(x)有极大值F(1)且有极小值F(-1)

C.y=F(x)的最小值为-2且最大值为2

D.y=F(x)在(-3,0)上不是单调函数

查看答案和解析>>

科目:高中数学 来源:2014届黑龙江省哈尔滨市高二下期中考试文数学卷(解析版) 题型:选择题

命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是(      )

A.若f(x) 是偶函数,则f(-x)是偶函数

B.若f(x)不是奇函数,则f(-x)不是奇函数

C.若f(-x)是奇函数,则f(x)是奇函数

D.若f(-x)不是奇函数,则f(x)不是奇函数

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年辽宁省高三高考压轴理科数学试卷(解析版) 题型:选择题

命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是

A.若f(x) 是偶函数,则f(-x)是偶函数

B.若f(x)不是奇函数,则f(-x)不是奇函数

C.若f(-x)是奇函数,则f(x)是奇函数

D.若f(-x)不是奇函数,则f(x)不是奇函数

 

查看答案和解析>>

同步练习册答案