精英家教网 > 高中数学 > 题目详情

设△ABC是圆O的内接正三角形,是圆O上任一点,则是否为定值?

答案:略
解析:

(r为半经)

同理

.而

(定值)


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,圆柱OO1内有一个三棱柱ABC-A1B1C1,三棱柱的底面为圆柱底面的内接三角形,且AB是圆O的直径.
(1)证明:平面A1ACC1⊥平面B1BCC1
(2)设AB=AA1,在圆柱OO1内随机选取一点,记该点取自于三棱柱ABC-A1B1C1内的概率为P.当点C在圆周上运动时,记平面A1ACC1与平面B1OC所成的角为θ(0°<θ≤90°),当P取最大值时,求cosθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,△ABC内接于圆O,AB是圆O的直径,AB=2,BC=1,设AE与平面ABC所成的角为θ,且tanθ=
3
2
,四边形DCBE为平行四边形,DC⊥平面ABC.
(1)求三棱锥C-ABE的体积;
(2)证明:平面ACD⊥平面ADE;
(3)在CD上是否存在一点M,使得MO∥平面ADE?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,圆柱OO1内有一个三棱柱ABC-A1B1C1,三棱柱的底面为圆柱底面的内接三角形,且AB是圆O的直径.
(1)证明:O1A∥平面B1OC;
(2)证明:平面A1ACC1⊥平面B1BCC1
(3)设AB=AA1=2,在圆柱OO1内随机选取一点,记该点取自于三棱柱ABC-A1B1C1内的概率为P,当点C在圆周上运动时,求P的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,圆柱OO1内有一个三棱柱ABC-A1B1C1,三棱柱的底面为圆柱底面的内接三角形,且AB是圆O的直径.
(1)证明:平面A1ACC1⊥平面B1BCC1
(2)设AB=AA1=2,点C为圆柱OO1底面圆周上一动点,记三棱柱ABC-A1B1C1的体积为V.
①求V的最大值;
②记平面A1ACC1与平面B1OC所成的角为θ(0°<θ≤90°),当V取最大值时,求cosθ的值;
③当V取最大值时,在三棱柱ABC-A1B1C1的侧面A1ACC1内(包括边界)的动点P到直线B1C1的距离等于它到直线AC的距离,求动点P到点C距离|PC|的最值.

查看答案和解析>>

同步练习册答案