精英家教网 > 高中数学 > 题目详情
等差数列{an}、{bn}的前n项和分别为SnTn,若的值等于(  )

A.1       B.        C.        D.

分析:本题考查当n→∞时数列的极限.解题的关键是把结论中通项的比值用条件中前n项和的比值表示出来,即把转化成关于n的多项式.

解法一 设Sn=kn·2n,Tn=kn(3n+1)(k为非零常数).

an=Sn-Sn-1(n≥2),

an=2kn2-2k(n-1)2=4kn-2k,

bn=kn(3n+1)-k(n-1)[3(n-1)+1]=6kn-2k.

解法二 ∵=

又∵

答案:C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设Sn是等差数列{an}的前n项和,S7=3(a2+a12),则
a7
a4
的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an},其中a1=
13
a2+a5=4,an=33
,则n的值为
50
50

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,若a3=4,a9=16,则此等差数列的公差d=
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,a1=8,a3=4.
(1)求数列{an}的通项公式;
(2)设Sn=|a1|+|a2|+…+|an|,求Sn
(3)设bn=
1n(12-an)
( n∈N*),求Tn=b1+b2+…+bn( n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

等差数列{an}的前n项和Sn满足S20=S40,下列结论中一定正确的是(  )

查看答案和解析>>

同步练习册答案