精英家教网 > 高中数学 > 题目详情
△ABC内接于⊙O:x2+y2=1(O为坐标原点),且3
OA
+4
OB
+5
OC
=0

(1)求△AOC的面积;
(2)若
OA
=(1,0)
OC
=(cos(θ-
π
4
),sin(θ-
π
4
)),θ∈(-
4
,0)
,求sinθ.
(1)∵3
OA
+4
OB
+5
OC
=0

3
OA
+4
OB
=-5
OC

据向量加法的平行四边形法则得sin∠AOC=
4
5
,cos∠AOC=-
3
5

∴△AOC的面积=
1
2
OA•OC•
sin∠AOC=
2
5

(2)∵
OA
• 
OC
=(1,0)•(cos(θ-
π
4
),sin(θ-
π
4
))
=cos(θ-
π
4
)

OA
OC
=
|OA
||
OC
|cos∠AOC
-
3
5

cos(θ-
π
4
)
=-
3
5

θ∈(-
4
,0)

θ-
π
4
∈(-π,-
π
4
)

sin(θ-
π
4
)=-
4
5

∴sinθ=sin[(θ-
π
4
)+
π
4
]=sin(θ-
π
4
)cos
π
4
+cos(θ-
π
4
)sin
π
4
=-
7
2
10
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

12、如图,△ABC内接于⊙O,BD切⊙O于点B,AB=AC,若∠CBD=40°,则∠ABC等于
70°

查看答案和解析>>

科目:高中数学 来源: 题型:

14、如图所示.△ABC内接于⊙O,若∠OAB=28°,则∠C的大小是
62°

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC内接于⊙O:x2+y2=1(O为坐标原点),且3
OA
+4
OB
+5
OC
=0

(1)求△AOC的面积;
(2)若
OA
=(1,0)
OC
=(cos(θ-
π
4
),sin(θ-
π
4
)),θ∈(-
4
,0)
,求sinθ.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•广州模拟)(几何证明选讲选做题)
如图,已知:△ABC内接于⊙O,点D在OC的延长线上,AD是⊙O的切线,若∠B=30°,AC=1,则AD的长为
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•太原模拟)如图,△ABC内接于⊙O,AD平分∠BAC,交⊙O于点D,BE是切线,AD的延长线交BE于E,连接BD、CD.
(1)求证:BD平分∠CBE;
(2)求证:AB•BE=AE•DC.

查看答案和解析>>

同步练习册答案