精英家教网 > 高中数学 > 题目详情
18、如图,PA是⊙O的切线,切点为A,PCB是⊙O的割线,交⊙O于C、B两点,半径OD⊥BC,垂足为E,AD交PB于点F,BF=PF.
(1)求证:PA=PF;
(2)若CF=1,求切线PA的长.
分析:(1)可通过证明角相等来得出边相等,本题中需要证明的相等角是∠PFA=∠PAF,我们看这两个角和哪些角有关系,∠PFA=∠DFE,∠D+∠DFE=∠D+∠DFA=90°,再看∠PAF,根据切线的性质可得出,∠PAF+∠OAD=90°,那么只要证明∠ODA=∠OAD,就能得出∠PFA=∠PAF的结论,而∠ODA=∠OAD正好可以用等边对等角来得出,因此便能证明出PA=PF;
(2)根据切割线定理我们可知:PA2=PC•PB,而PC=PF-1,PB=2PF,根据BF=PF=PA,那么将相等的线段进行置换即可求出PA的长.
解答:解:(1)证明:∵PA是圆O的切线,
∴∠OAD+∠PAF=90°…①
∵OD=OA,
∴∠OAD=∠ODA…②
∵OD⊥BC,
∴∠ODA+∠DFE=90°,而∠DFE=∠PFA.
∴∠PFA+∠ODA=90°…③
根据①②③可得:∠PFA=∠PAF,
∴PA=PF.

(2)∵PA是圆O的切线,
∴PA2=PC•PB.
∵PC=PF-CF=PA-1,PB=2PF=2PA,
∴PA2=(PA-1)•2PA.
∴PA=2.
点评:本题主要考查了切线的性质,切割线定理等知识点,根据切线的性质得出直角进而用等角的余角相等来求出边相等是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,⊙O是Rt△ABC的外接圆,∠ABC=90°,点P是圆外一点,PA切⊙O于点A,且PA=PB.
(1)求证:PB是⊙O的切线;
(2)已知PA=
3
,BC=1,求⊙O的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网A.(不等式选讲选做题)函数y=|x+1|+|x-1|的最小值是
 

B.(几何证明选讲选做题)如图,PA切圆O于点A,割线PBC经过圆心O,OB=PB=1,OA绕点O逆时针转60°到OD,则PD的长为
 

C.(极坐标与参数方程选做题)在极坐标系中,过圆ρ=6cosθ的圆心,且垂直于极轴的直线的极坐标方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线PA切⊙O于点A,PBM是⊙O的一条割线,如图所示有∠P=∠BAC,若PA=4
7
,BM=9,BC=5,则AB=
35
35

查看答案和解析>>

科目:高中数学 来源: 题型:

如图2-14,PA切⊙O于点A,PBC是⊙O的一条割线,且PA=,PB=BC,那么BC的长是(    )

图2-14

A.3                B.               C.            D.

查看答案和解析>>

科目:高中数学 来源:2013届吉林长春市高二第二次月考文科数学试卷(解析版) 题型:解答题

已知,如图,AB是⊙O的直径,AC切⊙O于点A,AC=AB,CO交⊙O于点P,CO的延长线交⊙O于点F,   BP的延长线交AC于点E.

⑴求证:FA∥BE;

⑵求证:

【解析】本试题主要是考查了平面几何中圆与三角形的综合运用。

(1)要证明线线平行,主要是通过证明线线平行的判定定理得到

(2)利用三角形△APC∽△FAC相似,来得到线段成比列的结论。

证明:(1)在⊙O中,∵直径AB与FP交于点O ∴OA=OF

 ∴∠OAF=∠F  ∵∠B=∠F  ∴∠OAF=∠B ∴FA∥BE

(2)∵AC为⊙O的切线,PA是弦  ∴∠PAC=∠F

∵∠C=∠C ∴△APC∽△FAC  ∴

 ∵AB=AC  ∴

 

查看答案和解析>>

同步练习册答案