精英家教网 > 高中数学 > 题目详情

若1≤a+b≤5,-1≤a-b≤3,求3a-2b的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

椭圆C:
x2
a2
+
y2
b2
=1 (a>b>0)
的离心率为
3
2
,长轴端点与短轴端点间的距离为
5

(Ⅰ)求椭圆C的方程;
(Ⅱ)过点D(0,4)的直线l与椭圆C交于两点E,F,O为坐标原点,若△OEF为直角三角形,求直线l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)
的左顶点、上顶点分别为A、B,P为线段AB上一点,F1、F2分别为椭圆E的左、右焦点,若
PF1
PF2
的最小值小于零,则椭圆E的离心率的取值范围为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

给出如下两个命题:命题A:函数y=(a-1)x为增函数. 命题B:不等式x2+(a+1)x+4≤0(a∈R)的解集为∅. 若命题“A或B”为真命题,而命题“A且B”为假命题,则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•南汇区二模)设F1、F2分别是椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点,其右焦点是直线y=x-1与x轴的交点,短轴的长是焦距的2倍.
(1)求椭圆的方程;
(2)若P是该椭圆上的一个动点,求
PF1
PF2
的最大值和最小值;
(3)是否存在过点A(5,0)的直线l与椭圆交于不同的两点C、D,使得|F2C|=|F2D|?若存在,求直线l的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案