精英家教网 > 高中数学 > 题目详情
设{an}是一个公差为d(d≠0)的等差数列,它的前10项和S10=110且a1,a2,a4成等比数列.

(1)证明a1=d;

(2)求公差d的值和数列{an}的通项公式.

(1)证明:因a1,a2,a4成等比数列,故=a1a4.

而{an}是等差数列,有a2=a1+d,a4=a1+3d.

∴(a1+d)2=a1(a1+3d),

+2a1d+d2=+3a1d.

∴a1=d.

(2)解:由条件S10=110,得10a1+d=110,即2a1+9d=22.

将a1=d代入得a1=d=2.

∴an=2n.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设{an}是一个公差为d(d>0)的等差数列.若
1
a1a2
+
1
a2a3
+
1
a3a4
=
3
4
,且其前6项的和S6=21,则an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设{an}是一个公差为1的等差数列,且a1+a2+a3+…+a98=137,则a2+a4+a6+…a98=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设{an}是一个公差为d(d≠0)的等差数列,它的前n项和为Sn,S10=110且a1,a2,a4成等比数列.
(Ⅰ)证明a1=d;
(Ⅱ)求公差d的值和数列{an}的前n项和Sn
(Ⅲ)设bn=
1Sn
,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•开封一模)设{an}是一个公差为2的等差数列,a1,a2,a4成等比数列.
(Ⅰ)求数列an的通项公式an
(Ⅱ)数列{bn}满足bn=n•2an,设{bn}的前n项和为Sn,求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•朝阳区二模)设{an}是一个公差为2的等差数列,a1,a2,a4成等比数列.
(Ⅰ)求数列{an}的通项公式an
(Ⅱ)数列{bn}满足bn=2an,求b1•b2•…•bn(用含n的式子表示).

查看答案和解析>>

同步练习册答案