| A. | $\sqrt{2}$ | B. | $2\sqrt{2}$ | C. | $3+\sqrt{2}$ | D. | $3+2\sqrt{2}$ |
分析 直线l:$\frac{x}{a}$+$\frac{y}{b}$=1(a>0,b>0)经过点(1,2),可得$\frac{1}{a}+\frac{2}{b}$=1.再利用基本不等式的性质即可得出.
解答 解:直线l:$\frac{x}{a}$+$\frac{y}{b}$=1(a>0,b>0)经过点(1,2),则$\frac{1}{a}+\frac{2}{b}$=1.
∴a+b=(a+b)$(\frac{1}{a}+\frac{2}{b})$=3+$\frac{b}{a}$+$\frac{2a}{b}$≥3+2$\sqrt{\frac{b}{a}•\frac{2a}{b}}$=3+2$\sqrt{2}$,当且仅当b=$\sqrt{2}$a=2+$\sqrt{2}$时取等号.
则直线l在x轴和y轴上的截距之和的最小值为3+2$\sqrt{2}$.
故选:D.
点评 本题考查了直线的截距式、基本不等式的性质,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 1 | C. | $\sqrt{2}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分非必要 | B. | 必要非充分 | ||
| C. | 充分必要 | D. | 既非充分又非必要 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| x | $\frac{π}{12}$ | $\frac{7π}{12}$ | ① | ||
| ωx+ϕ | 0 | $\frac{π}{2}$ | $\frac{3π}{2}$ | 2π | |
| f(x) | 0 | 1 | 0 | -1 | 0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com