精英家教网 > 高中数学 > 题目详情
直线t(t为参数)上与点P(-2,3)的距离等于2的点的坐标是(    )

A.(-4,5)                                   B.(-3,4)

C.(-3,4)或(-1,2)                       D.(-4,5)或(0,1)

解析:可以把直线的参数方程转化为标准式,或者直接根据直线参数方程的非标准式中参数的几何意义可得t=±,将t代入原方程,得

∴所求点的坐标为(-3,4)或(-1,2).

答案:C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知极坐标系的极点在直角坐标系的原点,极轴与x轴的正半轴重合,曲线C的极坐标方程为ρ2cos2θ+3ρ2sin2θ=3,直线l的参数方程为
x=-
3
t
y=1+t
(t为参数,t∈R)
.试在曲线C上求一点M,使它到直线l的距离最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•洛阳模拟)已知直线l:
x=1+
1
2
t
y=
3
2
t
(t为参数),曲线C1
x=cosθ
y=sinθ
(θ为参数).
(Ⅰ)设l与C1相交于A,B两点,求|AB|;
(Ⅱ)若把曲线C1上各点的横坐标压缩为原来的
1
2
倍,纵坐标压缩为原来的
3
2
倍,得到曲线C2,设点P是曲线C2上的一个动点,求它到直线l的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二阶矩阵M=(
a1
0b
)有特征值λ1=2及对应的一个特征向量
e
1
=
1
1

(Ⅰ)求矩阵M;
(II)若
a
=
2
1
,求M10
a

(2)已知直线l:
x=1+
1
2
t
y=
3
2
t
(t为参数),曲线C1
x=cosθ
y=sinθ
  (θ为参数).
(Ⅰ)设l与C1相交于A,B两点,求|AB|;
(Ⅱ)若把曲线C1上各点的横坐标压缩为原来的
1
2
倍,纵坐标压缩为原来的
3
2
倍,得到曲线C2C,设点P是曲线C2上的一个动点,求它到直线l的距离的最小值.
(3)已知函数f(x)=log2(|x+1|+|x-2|-m).
(Ⅰ)当m=5时,求函数f(x)的定义域;
(Ⅱ)若关于x的不等式f(x)≥1的解集是R,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xOy中,直线l的参数方程为
x=2+t
y=t
(t为参数)
,在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,A为曲线C:ρ=2cosθ上的动点.
(I)求曲线C的直角坐标方程;
(II)求动点A到直线l最大距离与最小距离之差.

查看答案和解析>>

同步练习册答案