精英家教网 > 高中数学 > 题目详情
(2013•太原一模)已知函数f(x)=log2x,若在[1,4]上随机取一个实数x0,则使得f(x0)≥1成立的概率为(  )
分析:解不等式log2x≥1,可得x≥2,以长度为测度,即可求在区间[1,4]上随机取一实数x,该实数x满足不等式1≤log2x的概率.
解答:解:本题属于几何概型
解不等式log2x≥1,可得x≥2,
∴在区间[1,4]上随机取一实数x,该实数x满足不等式1≤log2x的概率为
4-2
4-1
=
2
3

故选C.
点评:本题考查几何概型,解题的关键是解不等式,确定其测度.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•太原一模)x、y满足约束条件
x+y≥1
x-y≥-1
2x-y≤2
,若目标函数z=ax+by(a>0,b>0)的最大值为7,则
3
a
+
4
b
的最小值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•太原一模)在直角坐标系中,以原点为极点,x轴的正半轴为极轴建坐标系,已知曲线C:ρsin2θ=2acosθ(a>0),已知过点P(-2,-4)的直线L的参数方程为:
x=-2+
2
2
t
y=-4+
2
2
t
,直线L与曲线C分别交于M,N.
(Ⅰ)写出曲线C和直线L的普通方程;    
(Ⅱ)若|PM|,|MN|,|PN|成等比数列,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•太原一模)复数
i
1-i
的共轭复数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•太原一模)已知向量
a
b
满足|
a
|=1,|
b
|=
2
,(
a
-
b
)⊥
a
,向量
a
b
的夹角为
π
4
π
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•太原一模)已知函数f(x)=|2x+1|+|2x-3|.
(Ⅰ)求不等式f(x)≤6的解集;
(Ⅱ)若关于x的不等式f(x)<|a-1|的解集非空,求实数a的取值范围.

查看答案和解析>>

同步练习册答案