精英家教网 > 高中数学 > 题目详情
对实数a1,a2,…,an,则A=与B=的大小为(    )

A.A≥B           B.A≤B               C.A>B           D.A<B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设数列{an}是以a为首项,t为公比的等比数列,令bn=1+a1+a2+…+an,cn=2+b1+b2+…+bn,n∈N
(1)试用a,t表示bn和cn
(2)若a>0,t>0且t≠1,试比较cn与cn+1(n∈N)的大小
(3)是否存在实数对(a,t),其中t≠1,使得{cn}成等比数列,若存在,求出实数对(a,t)和{cn};若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

用n个不同的实数a1,a2,…,an可得到n!个不同的排列,每个排列为一行写成一个n!行的数阵.对第i行ai1,ai2,…,ain,记bi=-ai1+2ai2-3ai3+…+(-1)nnain,i=1,2,3,…,n!.例如:用1、2、3可得数阵如右,由于此数阵中每一列各数之和都是12,所以b1+b2+…+b6=-12+2×12-3×12=-24.

    那么,在用1、2、3、4、5形成的数阵中,b1+b2+…+b120=___________

查看答案和解析>>

科目:高中数学 来源: 题型:

用n个不同的实数a1,a2,…,an可得到n!个不同的排列,每个排列为一行写成一个n!行的数阵.对第i行ai1,ai2,…,ain,记bi=-ai1+2ai2-3ai3+…+(-1)nnam,i=1,2,3,…,n!.例如:用1,2,3可得数阵如下图,由于此数阵中每一列各数之和都是12,所以,b1+b2+…+b6=-12+2×12-3×12=-24,那么,在用1,2,3,4,5形成的数阵中,b1+b2+…+b120等于(    )

A.-3 600          B.1 800            C.-1 080                 D.-720

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x+(t>0)和点P(1,0),过点P作曲线y=f(x)的两条切线PM、PN,切点分别为M、N.

(1)设|MN|=g(t),试求函数g(t)的表达式;

(2)在(1)的条件下,若对任意的正整数n,在区间[2,n+]内总存在m+1个实数a1,a2,…,am,am+1,使得不等式g(a1)+g(a2)+…+g(am)<g(am+1)成立,求m的最大值.

查看答案和解析>>

同步练习册答案