精英家教网 > 高中数学 > 题目详情
已知数列{an}的前n项和Sn=-an-(
1
2
n-1+2.
(1)求数列{an}的通项公式;
(2)令cn=
n+1
n
an,Tn为数列{cn}的前n项和,试比较Tn
5n
2n+1
的大小.
(1)由题意知a1=-a1-1+2,∴a1=
1
2

当n≥2时,Sn-1=-an-1-(
1
2
)
n-2
+2

an=Sn-Sn-1=-an+an-1+(
1
2
)
n-1

2an=an-1+(
1
2
)
n-1
,即2n•an=2n-1an-1+1,
设bn=2nan,则bn-bn-1=1,
∵b1=2a1=1,∴bn=1+(n-1)=n=2nan
an=
n
2n

(2)由(1)得cn=
n+1
n
an=(n+1)(
1
2
)
n

Tn=2×
1
2
+3× (
1
2
)
2
 +4×(
1
2
)
3
+…+(n+1)×(
1
2
)
n
,①
1
2
Tn
=(
1
2
)
2
+3×(
1
2
)
3
+4×(
1
2
)
4
+…+n(
1
2
)
n
+(n+1)(
1
2
)
n+1

①-②得
1
2
Tn=1+ (
1
2
)
2
 +(
1
2
)
3
+…+(
1
2
)
n
-(n+1)(
1
2
)
n+1

=1+
1
4
[1-(
1
2
)
n-1
]
1-
1
2
-(n+1)(
1
2
)
n+1

=
3
2
-
n+3
2n+1

Tn=3-
n+3
2n

Tn-
5n
2n+1
=
(n+3)(2n-2n-1)
2n(2n+1)

于是确定Tn
5n
2n+1
的大小等价于比较2n与2n+1的大小,
由2<2×1+1,22<2×2+1,23>2×3+1,24>2×4+1,
可猜想当n≥3时,2n>2n+1,证明如下.
(1)当n=3时,23>2×3+1,猜想成立.
(2)假设当n=k时,猜想成立,即2k>2k+1.
当 n=k+1时,2k+1=2•2k>2(2k+1)=4k+2=2(k+1)+1+(2k-1)>2(k+1)-1.
所以,当n=k+1时,猜想也成立.
综合(1)(2)可知,对一切n≥3的正整数,都有2n>2n+1.
∴当n=1,2时,Tn
5n
2n+1
.当n≥3时,Tn
5n
2n+1
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

19、已知数列{an}的前n项和Sn=n2(n∈N*),数列{bn}为等比数列,且满足b1=a1,2b3=b4
(1)求数列{an},{bn}的通项公式;
(2)求数列{anbn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于(  )
A、16B、8C、4D、不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2+n+1,那么它的通项公式为an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

13、已知数列{an}的前n项和为Sn=3n+a,若{an}为等比数列,则实数a的值为
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn满足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通项公式an
(2)求Sn

查看答案和解析>>

同步练习册答案