精英家教网 > 高中数学 > 题目详情
12.已知数列{an}满足a1=0,对任意k∈N*,有a2k-1,a2k,a2k+1成公差为k的等差数列,若bn=$\frac{(2n+1)^{2}}{{a}_{2n+1}}$,则数列{bn}的前10项和S10=(  )
A.$\frac{450}{11}$B.$\frac{439}{11}$C.$\frac{452}{11}$D.$\frac{441}{11}$

分析 依题意,讨论k=1,2,3,4,可求得a2,a3,…,a9,…,从而利用累加法可求得a2n+1=n2+n,代入bn=$\frac{(2n+1)^{2}}{{a}_{2n+1}}$,用分组求和与裂项法求和即可求得答案.

解答 解:当k=1时,a1,a2,a3成公差为1的等差数列,
由于a1=0,故a2=1,a3=2;
同理可得当k=2,3,4时,可以求得a4=4,a5=6,a6=9,a7=12,a8=16,a9=20;
∴a3-a1=2,a5-a3=4,a7-a5=6,…
∴a2n+1-a2n-1=2n,
∴将上述n个等式相加得:a2n+1-a1=$\frac{n(2+2n)}{2}$=n2+n,
∴a2n+1=n2+n,
∴bn=$\frac{(2n+1)^{2}}{{a}_{2n+1}}$=$\frac{(2n+1)^{2}}{{n}^{2}+n}$=$\frac{4({n}^{2}+n)+1}{{n}^{2}+n}$=4+$\frac{1}{{n}^{2}+n}$=4+($\frac{1}{n}$-$\frac{1}{n+1}$),
∴Sn=b1+b2+…+bn
=4n+[(1-$\frac{1}{2}$)+($\frac{1}{2}$-$\frac{1}{3}$)+…+($\frac{1}{n}$-$\frac{1}{n+1}$)]
=4n+(1-$\frac{1}{n+1}$)
=4n+$\frac{n}{n+1}$.
则S10=40+$\frac{10}{11}$=$\frac{450}{11}$.
故选:A.

点评 本题考查数列的求和,着重考查等差数列的通项公式,求得a2n+1=n2+n是关键,也是难点,考查裂项法求和与分组求和,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知f(x)=2x-ax2+bcosx在点$(\frac{π}{2},f(\frac{π}{2}))$处的切线方程为$y=\frac{3}{4}π$.
(1)求a,b的值及f(x)在[0,π]上的单调区间;
(2)若x1,x2∈[0,π],且x1≠x2,f(x1)=f(x2),求证$f'(\frac{{{x_1}+{x_2}}}{2})<0$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=loga(x+b)(a>0,a≠1,b∈R)的图象如图所示,则a•b的值是3$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知向量$\overrightarrow{m}$=(x,x+2)与向量$\overrightarrow{n}$=(1,3x)是共线向量,则x等于(  )
A.$\frac{2}{3}$或-1B.-$\frac{2}{3}$或1C.$\frac{3}{2}$或-1D.-$\frac{3}{2}$或1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列函数中,既是奇函数又是单调递增函数的是(  )
A.y=exB.y=lnxC.y=$\frac{1}{x}$D.y=x3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若三边长分别为3,5,a的三角形是锐角三角形,则a的取值范围为(4,$\sqrt{34}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若$p:({x^2}+6x+8)\sqrt{x+3}≥0$;q:x=-3,则命题p是命题q的必要而不充分条件 (填“充分而不必要、必要而不充分、充要、既不充分也不必要”).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知命题p:x2+4x+3≥0,q:x∈Z,且“p∧q”与“非q”同时为假命题,则x=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.如图所示的数阵中,用A(m,n)表示第m行的第n个数,则以此规律A(8,2)为$\frac{1}{122}$.

查看答案和解析>>

同步练习册答案