精英家教网 > 高中数学 > 题目详情

证明(1)已知=1,求证3sin2α=-4cos2α

(2)已知数列,…,,…,计算S1,S2,S3,由此推算Sn的公式,并用数学归纳法给出证明.

答案:
解析:

  证明:(1)因为,所以,从而 2分

  另一方面,要证

  只要证

  只要证

  只要证

  由可得,成立,

  于是命题得证.5分

  


练习册系列答案
相关习题

科目:高中数学 来源:2012-2013学年江苏五校高三下学期期初教学质量调研数学卷(解析版) 题型:解答题

设非常数数列{an}满足an+2n∈N*,其中常数αβ均为非零实数,且αβ≠0.

(1)证明:数列{an}为等差数列的充要条件是α+2β=0;

(2)已知α=1,βa1=1,a2,求证:数列{| an1an1|} (n∈N*,n≥2)与数列{n} (n∈N*)中没有相同数值的项.

 

查看答案和解析>>

科目:高中数学 来源:2014届广东省高一期中考试文科数学试卷A卷(解析版) 题型:解答题

已知函数f(x)(x∈R)满足f(x)=,a≠0,f(1)=1,且使f(x)=2x成立的实数x只有一个.

(1)求函数f(x)的表达式;

(2)若数列{an}满足a1,an+1=f(an),bn-1,n∈N*,证明数列{bn}是等比数列,并求出{bn}的通项公式;

(3)在(2)的条件下,证明:a1b1+a2b2+…+anbn<1(n∈N*).

【解析】解: (1)由f(x)=,f(1)=1,得a=2b+1.

由f(x)=2x只有一解,即=2x,

也就是2ax2-2(1+b)x=0(a≠0)只有一解,

∴b=-1.∴a=-1.故f(x)=.…………………………………………4分

(2)an+1=f(an)=(n∈N*),bn-1, ∴

∴{bn}为等比数列,q=.又∵a1,∴b1-1=

bn=b1qn-1n-1n(n∈N*).……………………………9分

(3)证明:∵anbn=an=1-an=1-

∴a1b1+a2b2+…+anbn+…+<+…+

=1-<1(n∈N*).

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年江苏省、金陵中学、南京外国语学校高三三校联考数学卷 题型:解答题

A.选修4-1:几何证明选讲

 

 
(本小题满分10分)

如图,设AB为⊙O的任一条不与直线l垂直的直径,P是⊙O与l的公共点,AC⊥l,BD⊥l,垂足分别为C,D,且PC=PD.求证:(1)l是⊙O的切线;(2)PB平分∠ABD.

B.选修4-2:矩阵与变换

(本小题满分10分)

已知点A在变换:T:→=作用后,再绕原点逆时针旋转90°,得到点B.若点B坐标为(-3,4),求点A的坐标.

C.选修4-4:坐标系与参数方程

(本小题满分10分)

求曲线C1:被直线l:y=x-所截得的线段长.

D.选修4-5:不等式选讲

(本小题满分10分)

已知a、b、c是正实数,求证:≥.

 

 

查看答案和解析>>

科目:高中数学 来源:2009-2010学年度新课标高一上学期数学单元测试3-幂函数、函数的应用 题型:解答题

 

(2009·上海卷·文21·理20)有时可用函数

     

描述学习某学科知识的掌握程度.其中表示某学科知识的学习次数(),表示对该学科知识的掌握程度,正实数a与学科知识有关.

   (1)证明:当x 7时,掌握程度的增长量f(x+1)- f(x)总是下降;   

   (2)根据经验,学科甲、乙、丙对应的a的取值区间分别为(115,121),(121,127),

(127,133).当学习某学科知识6次时,掌握程度是85%,请确定相应的学科.

       (已知=1.0513)

 

 

 

 

 

 

 

查看答案和解析>>

同步练习册答案