精英家教网 > 高中数学 > 题目详情
3
sinx+cosx=2a-3
中,a的取值范围是______.
3
sinx+cosx=2a-3
,∵
3
2
sinx+
1
2
cosx=a-
3
2

即sin(x+
π
6
)=a-
3
2

∵-1≤sin(x+
π
6
)≤1,
∴-1≤a-
3
2
≤1,
解得
1
2
≤a≤
5
2

故答案为:
1
2
≤a≤
5
2
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对的边分别为a,b,c且满足csinA=
3
acosC

(I)求角C的大小;
(II)求函数f(x)=
3
sinx+cos(x+C)
x∈[0,
π
2
]
的最大值,并求取得最大值时x的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
a
b
,其中
a
=(2cosx,
3
sinx)
b
=(cosx,-2cosx)

(1)求函数f(x)在[0,π]上的单调递增区间和最小值;
(2)在△ABC中,a,b,c分别是角A,B,C的对边,且f(A)=-1,求
b-2c
a•cos(60°+C)
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设x∈R,向量
a
=(
3
sinx,
2
sinx)
b
=(2cosx,
2
sinx)
,函数f(x)=
a
b
-1

(Ⅰ)在区间(0,π)内,求f(x)的单调递减区间;
(Ⅱ)若f(θ)=1,其中0<θ<
π
2
,求cos(θ+
π
3
)

查看答案和解析>>

同步练习册答案