精英家教网 > 高中数学 > 题目详情
△ABC中,“A为锐角”是“sinA>0”的

A.充分不必要条件                             B.必要不充分条件

C.充分且必要条件                             D.既不充分也不必要条件

解析:在△ABC中,A为锐角,则有sinA>0;反之若sinA>0,A可以为锐角,也可能为钝角,故选A.

答案:A

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在Rt△ABC中,∠ABC=90°,BA=BC=2,AE⊥平面ABC,CD⊥平面ABC,CE交AD于点P.
(1)若AE=CD,点M为BC的中点,求证:直线MP∥平面EAB
(2)若AE=2,CD=1,求锐二面角E-BC-A的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

PA、PB、PC两两垂直;②P到△ABC三边的距离相等;③PA⊥BC,PB⊥AC;④PA、PB、PC与平面ABC所成的角相等;⑤平面PBC、PAB、PAC与平面ABC所成的锐二面角相等;⑥PA=PB=PC;⑦∠PAB=∠PAC,∠PBA=∠PBC,∠PCB=∠PCA;⑧AC⊥面PBO,AB⊥面PCO.若在上述8个序号中任意取出两个作为条件,其中一个一定能得出O为△ABC的垂心、另一个一定能得出O为△ABC的外心的概率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在边长为12的正方形A1 AAA1′中,点B、C在线段AA′上,且AB = 3,BC = 4,作BB1AA1,分别交A1A1′、AA1′于点B1P;作CC1AA1,分别交A1A1′、AA1′于点C1Q;将该正方形沿BB1CC1折叠,使得AA1′ 与AA1重合,构成如图所示的三棱柱ABCA1B1C1,在三棱柱ABCA1B1C1中, (Ⅰ)求证:AB⊥平面BCC1B1;  (Ⅱ)求面PQA与面ABC所成的锐二面角的大小.(Ⅲ)求面APQ将三棱柱ABCA1B1C1分成上、下两部分几何体的体积之比.

 


查看答案和解析>>

科目:高中数学 来源:2010-2011年浙江省高二下学期期中考试数学2-4 题型:解答题

如图,在三棱锥D-ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,E为BC的中点,F在棱AC上,且AF=3FC.

(1)求证AC⊥平面DEF;

(2)若M为BD的中点,问AC上是否存在一点N,使MN∥平面DEF?若存在,说明点N的位置;若不存在,试说明理由.

(3)求平面ABD与平面DEF所成锐二面角的余弦值。

 

查看答案和解析>>

科目:高中数学 来源:2011年四川省成都七中高考数学模拟试卷2(理科)(解析版) 题型:选择题

PA、PB、PC两两垂直;②P到△ABC三边的距离相等;③PA⊥BC,PB⊥AC;④PA、PB、PC与平面ABC所成的角相等;⑤平面PBC、PAB、PAC与平面ABC所成的锐二面角相等;⑥PA=PB=PC;⑦∠PAB=∠PAC,∠PBA=∠PBC,∠PCB=∠PCA;⑧AC⊥面PBO,AB⊥面PCO.若在上述8个序号中任意取出两个作为条件,其中一个一定能得出O为△ABC的垂心、另一个一定能得出O为△ABC的外心的概率为( )
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案