精英家教网 > 高中数学 > 题目详情

已知a0,且a1,解关于x的不等式

答案:略
解析:

解:当时,2a10

∴x∈(0,+∞)是原不等式的解.

时,2a1=0,原不等式的解为满足x值,

时,2a10,原不等式转化为

(1),即

时,得

a1时,得

(2),即

时,得

此时不等式的解为

a1时,无解.

因此,不等式的解集是

时,x∈(0,+∞)

时,

时,

a1时,


提示:

分析:本题是一个含有参数a的绝对值不等式,绝对值符号内又有一个对数函数.故解此不等式,关键在于对参数a进行正确地分类讨论.抓住一个数的绝对值是非负数,及对数函数的增减性,根据2a1的值可能大于0、等于0、小于0a0a1可将a划分为


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a>0,且a≠1,设p:函数y=loga(x+1)在x∈(0,+∞)内单调递减;q:函数y=x2+(2a-3)x+1有两个不同零点,如果p和q有且只有一个正确,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知a>0,且a≠1,数学公式
(1)求f(x)的表达式,并判断其单调性;
(2 )当f(x)的定义域为(-1,1)时,解关于m的不等式f(1-m)+f(1-m2)<0;
(3)若y=f(x)-4在(-∞,2)上恒为负值,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年浙江省杭州市学军中学高一(上)期中数学试卷(解析版) 题型:解答题

已知a>0,且a≠1,
(1)求f(x)的表达式,并判断其单调性;
(2 )当f(x)的定义域为(-1,1)时,解关于m的不等式f(1-m)+f(1-m2)<0;
(3)若y=f(x)-4在(-∞,2)上恒为负值,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2010年山东省聊城一中高三模块测试数学试卷(理科)(解析版) 题型:解答题

已知a>0,且a≠1,设p:函数y=loga(x+1)在x∈(0,+∞)内单调递减;q:函数y=x2+(2a-3)x+1有两个不同零点,如果p和q有且只有一个正确,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年广东省中山一中、深圳市宝安中学高三第二次联考数学试卷(文科)(解析版) 题型:解答题

已知a>0,且a≠1,设p:函数y=loga(x+1)在x∈(0,+∞)内单调递减;q:函数y=x2+(2a-3)x+1有两个不同零点,如果p和q有且只有一个正确,求a的取值范围.

查看答案和解析>>

同步练习册答案