精英家教网 > 高中数学 > 题目详情
12.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左焦点与抛物线y2=-8x的焦点重合,斜率为1的直线l与双曲线交于A、B两点,若A,B中点坐标为(-3,-1),则该双曲线的离心率为(  )
A.$\sqrt{2}$B.$\frac{3\sqrt{2}}{2}$C.$\sqrt{3}$D.$\frac{2}{3}$$\sqrt{3}$

分析 斜率为1的直线l设为y=x+t,代入中点(-3,-1),可得t=2,代入双曲线方程,由韦达定理和中点坐标公式可得a,b的关系,再由双曲线的a,b,c和离心率公式计算即可得到.

解答 解:斜率为1的直线l设为y=x+t,
由中点(-3,-1)可得t=2,
即y=x+2,代入双曲线方程$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1,
可得(b2-a2)x2-4a2x-4a2-a2b2=0,
则x1+x2=$\frac{4{a}^{2}}{{b}^{2}-{a}^{2}}$=-6,
即有a2=3b2
则c2=a2+b2=$\frac{4}{3}$a2
则e=$\frac{c}{a}$=$\frac{2\sqrt{3}}{3}$.
故选:D.

点评 本题考查双曲线的方程和性质,主要考查离心率的求法,同时考查双曲线方程和直线方程联立,运用韦达定理和中点坐标公式,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知点A(1,2)在抛物线C:y2=4x上,过点A作两条直线分别交抛物线于点D,E,直线AD,AE的斜率分别为kAD,KAE.若直线DE过点(-1,-2),则kAD•kAE=(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在△ABC中,A、B、C的对边分别为a、b、c,且bcosC=3acosB-ccosB,$\overrightarrow{BA}$•$\overrightarrow{BC}$=2,则△ABC的面积为(  )
A.$\sqrt{2}$B.$\frac{3}{2}$C.2$\sqrt{2}$D.4$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知$\overrightarrow{a}$=(4,3),则与$\overrightarrow{a}$共线的单位向量$\overrightarrow{e}$=$±(\frac{4}{5},\frac{3}{5})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点为F,过点F做与x轴垂直的直线交两渐近线于A、B两点,且与双曲线在第一象限的交点为P,设O为坐标原点,若$\overrightarrow{OP}$=λ$\overrightarrow{OA}$+μ$\overrightarrow{OB}$,λμ=$\frac{4}{25}$(λ,μ∈R),则双曲线的离心率e是(  )
A.$\sqrt{5}$B.$\frac{\sqrt{5}}{2}$C.$\frac{5}{2}$D.$\frac{5}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.一个口袋内装有2个白球和2个黑球.
(1)先摸出一个白球不放回,求再摸出一个白球的概率;
(2)先摸出1个白球后放回,求再摸出一个白球的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.若2b2-a2=4,求|a-2b|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.(1)已知直线l的斜率k=1-m2(m∈R),求直线l的倾斜角的取值范围;
(2)已知数列{an}满足 a1=1,an+1=2an+1(n∈N+),求其通项公式.

查看答案和解析>>

科目:高中数学 来源:2016-2017学年安徽六安一中高二上文周末检测三数学试卷(解析版) 题型:填空题

,两个等差数列的公差为,则的值为________.

查看答案和解析>>

同步练习册答案