精英家教网 > 高中数学 > 题目详情

()(本小题满分12分)

如图,在四棱锥PABCD中,侧面PAD⊥底面ABCD,侧棱PAPD=,底面ABCD为直角梯形,其中BCAD,ABAD,AD=2AB=2BC=2,OAD中点.

(Ⅰ)求证:PO⊥平面ABCD

(Ⅱ)求异面直线PB与CD所成角的余弦值;

(Ⅲ)求点A到平面PCD的距离.

(1)同解析(2)异面直线PBCD所成的角的余弦值为.(3)点A到平面PCD的距离d


解析:

解法一:

(Ⅰ)证明:在△PAD卡中PAPDOAD中点,所以POAD.

又侧面PAD⊥底面ABCD,平面PAD∩平面ABCDADPO平面PAD

所以PO⊥平面ABCD.

(Ⅱ)连结BO,在直角梯形ABCD中,BCAD,AD=2AB=2BC

ODBCODBC,所以四边形OBCD是平行四边形,

所以OBDC.

由(Ⅰ)知POOB,∠PBO为锐角,

所以∠PBO是异面直线PBCD所成的角.

因为AD=2AB=2BC=2,在Rt△AOB中,AB=1,AO=1,所以OB

在Rt△POA中,因为AP=AO=1,所以OP=1,

在Rt△PBO中,PB,

cos∠PBO=,

所以异面直线PBCD所成的角的余弦值为.

(Ⅲ)

由(Ⅱ)得CDOB

在Rt△POC中,PC

所以PCCDDPS△PCD=·2=.

S△=

设点A到平面PCD的距离h

VP-ACD=VA-PCD

SACD·OPSPCD·h

×1×1=××h

解得h.

解法二:

(Ⅰ)同解法一,

(Ⅱ)以O为坐标原点,的方向分别为x轴、y轴、z轴的正方向,建立空间直角坐标系O-xyz.

A(0,-1,0),B(1,-1,0),C(1,0,0),

D(0,1,0),P(0,0,1).

所以=(-1,1,0),=(t,-1,-1),

∞〈〉=

所以异面直线PBCD所成的角的余弦值为

(Ⅲ)设平面PCD的法向量为n=(x0,y0,x0),

由(Ⅱ)知=(-1,0,1),=(-1,1,0),

则  n·=0,所以  -x0+ x0=0,

n·=0,    -x0+ y0=0, 

x0=y0=x0,    

x0=1,得平面的一个法向量为n=(1,1,1).

=(1,1,0).

从而点A到平面PCD的距离d

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(文) (本小题满分12分已知函数y=4-2
3
sinx•cosx-2sin2x(x∈R)

(1)求函数的值域和最小正周期;
(2)求函数的递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•自贡三模)(本小题满分12分>
设平面直角坐标中,O为原点,N为动点,|
ON
|=6,
ON
=
5
OM
.过点M作MM1丄y轴于M1,过N作NN1⊥x轴于点N1
OT
=
M1M
+
N1N
,记点T的轨迹为曲线C.
(I)求曲线C的方程:
(H)已知直线L与双曲线C:5x2-y2=36的右支相交于P、Q两点(其中点P在第-象限).线段OP交轨迹C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直线L的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)已知关于的一元二次函数  (Ⅰ)设集合P={1,2, 3}和Q={-1,1,2,3,4},分别从集合P和Q中随机取一个数作为,求函数在区间[上是增函数的概率;(Ⅱ)设点()是区域内的随机点,求函数上是增函数的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)已知函数,且。①求的最大值及最小值;②求的在定义域上的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分) 一几何体的三视图如图所示,,A1A=,AB=,AC=2,A1C1=1,在线段上且=.

(I)证明:平面⊥平面

(II)求二面角的余弦值.

查看答案和解析>>

同步练习册答案