精英家教网 > 高中数学 > 题目详情
19.已知集合A={1,2,3,4,5,6,7},B={x|0<x<5,x∈Z},全集U=R,求:
(1)A∩B;                 
(2)AUB.

分析 (1)列举出B中元素,求出A与B的交集即可;
(2)求出A与B的并集即可.

解答 解:(1)∵A={1,2,3,4,5,6,7},B={x|0<x<5,x∈Z}={1,2,3,4},
∴A∩B={1,2,3,4};
(2)∵A={1,2,3,4,5,6,7},B={x|0<x<5,x∈Z}={1,2,3,4},
∴A∪B={1,2,3,4,5,6,7}.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.P是双曲线$\frac{x^2}{9}-\frac{y^2}{16}=1$的右支上一点,M,N分别是圆x2+y2+10x+21=0和x2+y2-10x+24=0上的点,则|PM|-|PN|的最大值为(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数$f(x)={e^x}-\frac{1}{2}a{x^2}+(a-e)x$(x≥0)(e=2.71828…为自然对数的底数)
(1)当a=0时,求f(x)的最小值;
(2)当1<a<e时,求f(x)单调区间的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设P={x|x<4},Q={x|x2<4},则(  )
A.P⊆QB.Q⊆PC.P∈QD.Q∈P

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若a>b,则下列不等式中正确的是(  )
A.$\frac{1}{a}<\frac{1}{b}$B.a2>b2C.a+b≥2$\sqrt{ab}$D.a2+b2>2ab

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在长方体ABCD-A1B1C1D1中,AB=2$\sqrt{3}$,AD=2$\sqrt{3}$,AA1=2,BC和A1C1所成的角=45度
AA1和BC1所成的角=60度.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率$e=\frac{1}{2}$,且过点Q$(1,\;\frac{3}{2})$
(1)求椭圆C的方程.
(2)椭圆C长轴两端点分别为A,B,点P为椭圆上异于A,B的动点,定直线x=4与直线PA,PB分别交于M,N两点,直线PA,PB的斜率分别为k1,k2
①证明${k_1}{k_2}=-\frac{3}{4}$;
②若E(7,0),过E,M,N三点的圆是否过x轴上不同于点E的定点?若经过,求出定点坐标;若不经过,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知集合A={x||x-1|≥1,x∈R},B={x||x-2|<1,x∈Z},则A∩B(  )
A.[2,3]B.[2,3)C.{2,3}D.{2}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知A,B分别是函数f(x)=2sinωx(ω>0)在y轴右侧图象上的第一个最高点和第一个最低点,且∠AOB=$\frac{π}{2}$,则该函数的最小正周期是$\frac{8\sqrt{3}}{3}$.

查看答案和解析>>

同步练习册答案